class DyCAConv(nn.Module): def __init__(self, inp, oup, kernel_size, stride, reduction=32): super(DyCAConv, self).__init__() self.pool_h = nn.AdaptiveAvgPool2d((None, 1)) self.pool_w = nn.AdaptiveAvgPool2d((1, None)) self.pool_h1 = nn.MaxPool2d((None, 1)) self.pool_w1 = nn.MaxPool2d((1, None)) mip = max(8, inp // reduction) self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0) self.bn1 = nn.BatchNorm2d(mip) self.act = h_swish() self.conv_h = nn.Conv2d(mip, inp, kernel_size=1, stride=1, padding=0) self.conv_w = nn.Conv2d(mip, inp, kernel_size=1, stride=1, padding=0) self.conv = nn.Sequential(nn.Conv2d(inp, oup, kernel_size, padding=kernel_size // 2, stride=stride), nn.BatchNorm2d(oup), nn.SiLU()) self.dynamic_weight_fc = nn.Sequential( nn.Linear(inp, 2), nn.Softmax(dim=1) ) def forward(self, x): identity = x n, c, h, w = x.size() x_h = self.pool_h(x) x_w = self.pool_w(x).permute(0, 1, 3, 2) x_h1 = self.pool_h1(x) x_w1 = self.pool_w1(x).permute(0, 1, 3, 2) y = torch.cat([x_h, x_w, x_h1, x_w1], dim=2) y = self.conv1(y) y = self.bn1(y) y = self.act(y) x_h, x_w, _, _ = torch.split(y, [h, w, h, w], dim=2) x_w = x_w.permute(0, 1, 3, 2) x_w1 = x_w1.permute(0, 1, 3, 2) a_h = self.conv_h(x_h).sigmoid() a_w = self.conv_w(x_w).sigmoid() a_w1 = self.conv_w(x_w1).sigmoid() # Compute dynamic weights x_avg_pool = nn.AdaptiveAvgPool2d(1)(x) x_avg_pool = x_avg_pool.view(x.size(0), -1) dynamic_weights = self.dynamic_weight_fc(x_avg_pool) out = identity * (dynamic_weights[:, 0].view(-1, 1, 1, 1) * a_w + dynamic_weights[:, 1].view(-1, 1, 1, 1) * a_h + dynamic_weights[:, 1].view(-1, 1, 1, 1) * a_w1) return self.conv(out)在里面修改一下,换成这个y = torch.cat([x_h+x_h1, x_w+x_w1], dim=2)
时间: 2023-11-15 07:06:26 浏览: 156
如果您想将原来代码中的y拼接成x_h+x_h1和x_w+x_w1,可以按照以下方式进行修改:
```
# 将原来的y拆分成x_h, x_w, x_h1, x_w1
x_h, x_w, x_h1, x_w1 = torch.split(y, [h, w, h, w], dim=2)
# 将x_h和x_h1相加,x_w和x_w1相加
x_h = x_h + x_h1
x_w = x_w + x_w1
# 将x_h和x_w拼接起来
y = torch.cat([x_h, x_w], dim=2)
```
这样就可以将x_h和x_h1相加,x_w和x_w1相加,并将它们拼接起来,作为新的y输出了。
相关问题
class h_sigmoid(nn.Module): def __init__(self, inplace=True): super(h_sigmoid, self).__init__() self.relu = nn.ReLU6(inplace=inplace) def forward(self, x): return self.relu(x + 3) / 6 class h_swish(nn.Module): def __init__(self, inplace=True): super(h_swish, self).__init__() self.sigmoid = h_sigmoid(inplace=inplace) def forward(self, x): return x * self.sigmoid(x) class CoordAtt(nn.Module): def __init__(self, inp, oup, reduction=32): super(CoordAtt, self).__init__() # height方向上的均值池化 self.pool_h = nn.AdaptiveAvgPool2d((None, 1)) # width方向上的均值池化 self.pool_w = nn.AdaptiveAvgPool2d((1, None)) mip = max(8, inp // reduction) self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0) self.bn1 = nn.BatchNorm2d(mip) self.act = h_swish() self.conv_h = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0) self.conv_w = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0) def forward(self, x): identity = x n, c, h, w = x.size() x_h = self.pool_h(x) x_w = self.pool_w(x).permute(0, 1, 3, 2) y = torch.cat([x_h, x_w], dim=2) y = self.conv1(y) y = self.bn1(y) y = self.act(y) x_h, x_w = torch.split(y, [h, w], dim=2) x_w = x_w.permute(0, 1, 3, 2) a_h = self.conv_h(x_h).sigmoid() a_w = self.conv_w(x_w).sigmoid() out = identity * a_w * a_h return out 嵌入CA注意力机制后出现这个问题怎么解决TypeError: init() takes from 3 to 4 positional arguments but 5 were given
根据您提供的代码,我看到在CoordAtt类的初始化函数中,没有发现任何与错误消息匹配的问题。根据错误提示,init()函数接受3到4个位置参数,但是在您的代码中没有传递额外的参数。
因此,可能的原因是您在其他地方调用了CoordAtt类的初始化函数,并传递了额外的参数。请检查一下您的代码,确保在初始化CoordAtt类时没有传递多余的参数。
另外,如果您在其他地方使用了CoordAtt类的实例,并且传递了额外的参数,那么可能需要修改相应的代码,以确保与CoordAtt类的初始化函数匹配。
如果问题仍然存在,请提供更多的代码和上下文信息,这样我可以更好地帮助您解决问题。
class DyCAConv(nn.Module): def __init__(self, inp, oup, kernel_size, stride, reduction=32): super(DyCAConv, self).__init__() self.pool_h = nn.AdaptiveAvgPool2d((None, 1)) self.pool_w = nn.AdaptiveAvgPool2d((1, None)) mip = max(8, inp // reduction) self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0) self.bn1 = nn.BatchNorm2d(mip) self.act = h_swish() self.conv_h = nn.Conv2d(mip, inp, kernel_size=1, stride=1, padding=0) self.conv_w = nn.Conv2d(mip, inp, kernel_size=1, stride=1, padding=0) self.conv = nn.Sequential(nn.Conv2d(inp, oup, kernel_size, padding=kernel_size // 2, stride=stride), nn.BatchNorm2d(oup), nn.SiLU()) self.dynamic_weight_fc = nn.Sequential( nn.Linear(inp, 2), nn.Softmax(dim=1) ) def forward(self, x): identity = x n, c, h, w = x.size() x_h = self.pool_h(x) x_w = self.pool_w(x).permute(0, 1, 3, 2) y = torch.cat([x_h, x_w], dim=2) y = self.conv1(y) y = self.bn1(y) y = self.act(y) x_h, x_w = torch.split(y, [h, w], dim=2) x_w = x_w.permute(0, 1, 3, 2) a_h = self.conv_h(x_h).sigmoid() a_w = self.conv_w(x_w).sigmoid() # Compute dynamic weights x_avg_pool = nn.AdaptiveAvgPool2d(1)(x) x_avg_pool = x_avg_pool.view(x.size(0), -1) dynamic_weights = self.dynamic_weight_fc(x_avg_pool) out = identity * (dynamic_weights[:, 0].view(-1, 1, 1, 1) * a_w + dynamic_weights[:, 1].view(-1, 1, 1, 1) * a_h) return self.conv(out) 在 self.pool_h = nn.AdaptiveAvgPool2d((None, 1)) self.pool_w = nn.AdaptiveAvgPool2d((1, None))这里继续添加 self.pool_w1 = nn.MaxPool2d((1, None)) self.pool_h1 = nn.MaxPool2d((None, 1))
这段代码中的 `DyCAConv` 类定义了一个动态通道注意力卷积层。在 `__init__` 方法中,模型初始化了一些参数和层,包括 `pool_h` 和 `pool_w`,分别是对输入图片的高和宽进行自适应池化的层。`inp` 和 `oup` 分别是输入和输出通道数,`kernel_size` 是卷积核大小,`stride` 是步长,`reduction` 是通道缩减系数。模型中的 `forward` 方法实现了这个动态通道注意力卷积层的前向传播过程。在这个过程中,模型首先将输入图片 `x` 分别经过 `pool_h` 和 `pool_w` 进行自适应池化,然后用 `torch.cat` 函数将两个经过池化的结果在通道维度上拼接起来,再经过一些卷积、激活、分割等操作,最终得到输出。在这个过程中,模型还计算了动态权重 `dynamic_weights`,用于加权不同的通道信息。您所提出的代码修改建议是在 `__init__` 方法中添加了两个新的自适应池化层 `pool_h1` 和 `pool_w1`,并没有在 `forward` 方法中使用这些新的层,如果您想要使用这些新的自适应池化层,应该在 `forward` 方法中将其应用到输入图片上。
阅读全文