class InvertedResidual(nn.Cell): def init(self, inp, oup, stride, expand_ratio): super(InvertedResidual, self).init() assert stride in [1, 2] hidden_dim = int(round(inp * expand_ratio)) self.use_res_connect = stride == 1 and inp == oup layers = [] if expand_ratio != 1: layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1)) layers.extend([ dw ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim), pw-linear nn.Conv2d(hidden_dim, oup, kernel_size=1, stride=1, has_bias=False), nn.BatchNorm2d(oup), ]) self.conv = nn.SequentialCell(layers) self.add = ops.Add() self.cast = ops.Cast() def construct(self, x): identity = x x = self.conv(x) if self.use_res_connect: return self.add(identity, x) return x
时间: 2023-09-30 12:04:53 浏览: 94
这段代码是一个定义了反向残差模块(InResidual)的类。这个模块深度学习的卷积神经网络常用于增加网络的深度和线性表示能力。在该类中构造函数(__init__)接受输入通道数(inp)、输出通道数(oup)、步长(stride)和扩展比例(expand_ratio)作为参数。
在构造函数中,首先进行了一些参数的检查和计算。然后根据是否需要进行残差连接来选择不同网络层。如果步长为1且输入通道数等于输出通道数,则使用残差连接(residual connection)。否则,采用分组卷积(depthwise convolution)和逐点卷积(pointwise convolution)来构建网络层。
在前向传播函数(construct)中,首先保存输入张量作为身份张量(identity),然后通过网络层进行前向传播得到输出张量(x)。最后,根据是否需要进行残差连接,返回相应的结果。
这段代码是使用PyTorch框架编写的,用于定义反向残差模块的类。它可以用于构建深度学习模型中的残差连接部分。
相关问题
解释这段代码class SE(nn.Module): def __init__(self, inp, oup, expansion=0.25): super().__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Linear(oup, int(inp * expansion), bias=False), nn.GELU(), nn.Linear(int(inp * expansion), oup, bias=False), nn.Sigmoid() ) def forward(self, x): b, c, _, _ = x.size() y = self.avg_pool(x).view(b, c) y = self.fc(y).view(b, c, 1, 1) return x * y
这段代码实现了一个SE模块,用于对输入的特征图进行通道注意力机制的加权,使得一部分通道特征获得更多的权重。具体地说,这个模块包括一个自适应平均池化层,用于将输入的特征图压缩成一个1维向量,接着是两个全连接层和一些激活函数,最后得到一个通道注意力系数向量,然后将输入特征图和该向量按元素相乘,得到加权后的特征图。
class h_sigmoid(nn.Module): def __init__(self, inplace=True): super(h_sigmoid, self).__init__() self.relu = nn.ReLU6(inplace=inplace) def forward(self, x): return self.relu(x + 3) / 6 class h_swish(nn.Module): def __init__(self, inplace=True): super(h_swish, self).__init__() self.sigmoid = h_sigmoid(inplace=inplace) def forward(self, x): return x * self.sigmoid(x) class CoordAtt(nn.Module): def __init__(self, inp, oup, reduction=32): super(CoordAtt, self).__init__() # height方向上的均值池化 self.pool_h = nn.AdaptiveAvgPool2d((None, 1)) # width方向上的均值池化 self.pool_w = nn.AdaptiveAvgPool2d((1, None)) mip = max(8, inp // reduction) self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0) self.bn1 = nn.BatchNorm2d(mip) self.act = h_swish() self.conv_h = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0) self.conv_w = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0) def forward(self, x): identity = x n, c, h, w = x.size() x_h = self.pool_h(x) x_w = self.pool_w(x).permute(0, 1, 3, 2) y = torch.cat([x_h, x_w], dim=2) y = self.conv1(y) y = self.bn1(y) y = self.act(y) x_h, x_w = torch.split(y, [h, w], dim=2) x_w = x_w.permute(0, 1, 3, 2) a_h = self.conv_h(x_h).sigmoid() a_w = self.conv_w(x_w).sigmoid() out = identity * a_w * a_h return out 嵌入CA注意力机制后出现这个问题怎么解决TypeError: init() takes from 3 to 4 positional arguments but 5 were given
根据您提供的代码,我看到在CoordAtt类的初始化函数中,没有发现任何与错误消息匹配的问题。根据错误提示,init()函数接受3到4个位置参数,但是在您的代码中没有传递额外的参数。
因此,可能的原因是您在其他地方调用了CoordAtt类的初始化函数,并传递了额外的参数。请检查一下您的代码,确保在初始化CoordAtt类时没有传递多余的参数。
另外,如果您在其他地方使用了CoordAtt类的实例,并且传递了额外的参数,那么可能需要修改相应的代码,以确保与CoordAtt类的初始化函数匹配。
如果问题仍然存在,请提供更多的代码和上下文信息,这样我可以更好地帮助您解决问题。
阅读全文