写一个测试rocblas库中的SGEMM的方法
时间: 2024-01-26 21:04:23 浏览: 194
下面是一个简单的使用rocBLAS库中SGEMM函数进行矩阵乘法运算的示例代码:
```c++
#include <iostream>
#include <cstdlib>
#include <ctime>
#include "rocblas.h"
#define N 1024
int main()
{
// 初始化rocBLAS库
rocblas_handle handle;
rocblas_create_handle(&handle);
// 定义矩阵A、B、C
float *A, *B, *C;
A = (float*)malloc(N * N * sizeof(float));
B = (float*)malloc(N * N * sizeof(float));
C = (float*)malloc(N * N * sizeof(float));
// 初始化矩阵A、B、C
srand(time(NULL));
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
A[i * N + j] = rand() / (float)RAND_MAX;
B[i * N + j] = rand() / (float)RAND_MAX;
C[i * N + j] = 0.0f;
}
}
// 定义矩阵A、B、C在设备端上的指针
float *dA, *dB, *dC;
rocblas_status status;
status = rocblas_status(rocblas_malloc((void**)&dA, N * N * sizeof(float)));
status = rocblas_status(rocblas_malloc((void**)&dB, N * N * sizeof(float)));
status = rocblas_status(rocblas_malloc((void**)&dC, N * N * sizeof(float)));
// 将矩阵A、B复制到设备端
status = rocblas_set_matrix(N, N, sizeof(float), A, N, dA, N);
status = rocblas_set_matrix(N, N, sizeof(float), B, N, dB, N);
// 设置矩阵A、B、C的参数
float alpha = 1.0f, beta = 0.0f;
rocblas_operation transa = rocblas_operation_none;
rocblas_operation transb = rocblas_operation_none;
rocblas_int lda = N, ldb = N, ldc = N;
// 调用SGEMM函数进行矩阵乘法运算
status = rocblas_sgemm(handle, transa, transb, N, N, N, &alpha, dA, lda, dB, ldb, &beta, dC, ldc);
// 将矩阵C从设备端复制到主机端
status = rocblas_get_matrix(N, N, sizeof(float), dC, N, C, N);
// 输出矩阵C的前10行10列
for (int i = 0; i < 10; i++) {
for (int j = 0; j < 10; j++) {
std::cout << C[i * N + j] << " ";
}
std::cout << std::endl;
}
// 释放内存
rocblas_free(dA);
rocblas_free(dB);
rocblas_free(dC);
free(A);
free(B);
free(C);
// 销毁rocBLAS库句柄
rocblas_destroy_handle(handle);
return 0;
}
```
该示例代码中,首先初始化了rocBLAS库,并定义了三个大小为1024×1024的矩阵A、B、C,并对矩阵A、B进行了随机初始化。然后,分配了矩阵A、B、C在设备端上的内存,并将矩阵A、B从主机端复制到设备端。接下来,调用rocBLAS库中的SGEMM函数进行矩阵乘法运算,并将结果从设备端复制到主机端。最后,输出了矩阵C的前10行10列,并释放了内存。
阅读全文