# 初始化ORB检测器 orb = cv.ORB_create() # 基于ORB找到关键点和检测器 kp1, des1 = orb.detectAndCompute(img1, None) kp2, des2 = orb.detectAndCompute(img2, None)
时间: 2023-06-25 16:03:09 浏览: 175
这段代码使用了OpenCV中的ORB算法来进行特征点检测和描述子的计算。具体来说,首先通过 cv.ORB_create() 函数初始化了一个ORB检测器。然后,在输入的两张图片 img1 和 img2 上,通过 orb.detectAndCompute() 函数找到了关键点和对应的描述子。kp1 和 kp2 分别是两张图片中找到的关键点,des1 和 des2 是对应的描述子。ORB算法是一种常用的特征点检测与描述子计算方法,常用于计算机视觉领域的图像匹配、目标跟踪等任务。
相关问题
这段代码的第38行运行不了 import cv2 import numpy as np # 读取左右两张图像 img_left = cv2.imread('share4/img_put/7/7.3/left_0.jpg', 0) img_right = cv2.imread('share4/img_put/7/7.3/right_0.jpg', 0) # 读取左右两张图像 img1 = cv2.imread('left.png', 0) img2 = cv2.imread('right.png', 0) img1 = cv2.UMat(img1) img2 = cv2.UMat(img2) # 初始化ORB特征点提取器和SGBM算法 orb = cv2.ORB_create() sgbm = cv2.StereoSGBM_create(minDisparity=0, numDisparities=128, blockSize=11) # 提取左右两幅图像的特征点 kp_left, desc_left = orb.detectAndCompute(img_left, None) kp_right, desc_right = orb.detectAndCompute(img_right, None) # 特征点匹配 bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) matches = bf.match(desc_left, desc_right) # 根据特征点得到匹配窗口并进行立体匹配 disparities = np.zeros_like(img_left) for match in matches: pt_left = np.array(kp_left[match.queryIdx].pt, dtype=np.int) pt_right = np.array(kp_right[match.trainIdx].pt, dtype=np.int) win_size = 11 left_win = cv2.getRectSubPix(img_left, (win_size, win_size), tuple(pt_left)) right_win = cv2.getRectSubPix(img_right, (win_size, win_size), tuple(pt_right)) disparity = sgbm.compute(left_win, right_win).astype(np.float32) / 16.0 disparities[pt_left[1], pt_left[0]] = disparity # 显示视差图 cv2.imshow('disparities', disparities) cv2.waitKey()
这个问题可能是因为缺少了cv2或numpy模块。你需要在你的计算机上安装这些模块才能运行该程序。你可以通过在终端上使用pip命令来安装这些模块。例如,你可以输入"pip install opencv-python"来安装cv2模块,输入"pip install numpy"来安装numpy模块。
import cv2 import numpy as np # 读取两幅图像 img1 = cv2.imread('D:\wzk\JIEMIAN\images\er_duibidu.jpg') img2 = cv2.imread('D:\wzk\JIEMIAN\images\yi_duibidu.jpg') # 将两幅图像转换为灰度图像 gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY) gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY) # 提取图像特征点 orb = cv2.ORB_create() kp1, des1 = orb.detectAndCompute(gray1, None) kp2, des2 = orb.detectAndCompute(gray2, None) # 匹配特征点 matcher = cv2.DescriptorMatcher_create(cv2.DESCRIPTOR_MATCHER_BRUTEFORCE_HAMMING) matches = matcher.match(des1, des2) # 选择最佳匹配点 matches = sorted(matches, key=lambda x: x.distance) good_matches = matches[:int(len(matches)*0.15)] # 绘制特征点连接图 img3 = cv2.drawMatches(img1, kp1, img2, kp2, good_matches, None, flags=cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS) # 计算变换矩阵 src_pts = np.float32([kp1[m.queryIdx].pt for m in good_matches]).reshape(-1, 1, 2) dst_pts = np.float32([kp2[m.trainIdx].pt for m in good_matches]).reshape(-1, 1, 2) M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0) # 拼接图像 result = cv2.warpPerspective(img1, M, (img1.shape[1] + img2.shape[1], img1.shape[0])) result[0:img2.shape[0], 0:img2.shape[1]] = img2 # 保存连接图 cv2.imwrite('D:\wzk\JIEMIAN\Result\ORB-pz.jpg', img3) # 保存第二幅图像 cv2.imwrite('D:\wzk\JIEMIAN\Result\ORB-pj.jpg', result) # 显示结果 cv2.namedWindow("Keypoint Matches", cv2.WINDOW_NORMAL) cv2.imshow("Keypoint Matches", img3) cv2.namedWindow("Result",cv2.WINDOW_NORMAL) cv2.imshow('Result', result) cv2.waitKey(0) cv2.destroyAllWindows()改进为对文件夹内的多幅图像进行配准拼接
可以使用循环遍历文件夹内的所有图像,对每幅图像进行配准拼接,最终将所有拼接结果合并成一张大图像。
以下是示例代码:
```
import cv2
import numpy as np
import os
# 定义文件夹路径和结果保存路径
folder_path = 'D:\wzk\JIEMIAN\images'
result_path = 'D:\wzk\JIEMIAN\Result\ORB-pj.jpg'
# 获取文件夹内所有图像路径
img_paths = [os.path.join(folder_path, f) for f in os.listdir(folder_path) if f.endswith('.jpg')]
# 遍历所有图像,进行配准拼接
result = cv2.imread(img_paths[0])
for i in range(1, len(img_paths)):
img = cv2.imread(img_paths[i])
# 将两幅图像转换为灰度图像
gray1 = cv2.cvtColor(result, cv2.COLOR_BGR2GRAY)
gray2 = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 提取图像特征点
orb = cv2.ORB_create()
kp1, des1 = orb.detectAndCompute(gray1, None)
kp2, des2 = orb.detectAndCompute(gray2, None)
# 匹配特征点
matcher = cv2.DescriptorMatcher_create(cv2.DESCRIPTOR_MATCHER_BRUTEFORCE_HAMMING)
matches = matcher.match(des1, des2)
# 选择最佳匹配点
matches = sorted(matches, key=lambda x: x.distance)
good_matches = matches[:int(len(matches)*0.15)]
# 计算变换矩阵
src_pts = np.float32([kp1[m.queryIdx].pt for m in good_matches]).reshape(-1, 1, 2)
dst_pts = np.float32([kp2[m.trainIdx].pt for m in good_matches]).reshape(-1, 1, 2)
M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
# 拼接图像
result = cv2.warpPerspective(result, M, (result.shape[1] + img.shape[1], result.shape[0]))
result[0:img.shape[0], result.shape[1]-img.shape[1]:] = img
# 保存拼接结果
cv2.imwrite(result_path, result)
# 显示结果
cv2.namedWindow("Result",cv2.WINDOW_NORMAL)
cv2.imshow('Result', result)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
代码中使用了 `os` 模块来遍历文件夹内所有图像的路径,然后对每幅图像进行配准拼接。最终将所有拼接结果合并成一张大图像,并保存到指定路径。
阅读全文