16、 求解多项式x3-7x2+2x+40=0的根,表达式为
时间: 2023-12-21 13:03:21 浏览: 203
可以使用MATLAB中的roots函数解这个三次方程。具体代码如下:
```matlab
coeffs = [1, -7, 2, 40];
roots(coeffs)
```
其中,coeffs是一个包含方程系数的向量,向量中从左到右的元素分别对应x的3次项系数、2次项系数、1次项系数和常数项系数。运行后,MATLAB会输出这个方程的三个根,例如:
```
ans =
6.0356
-1.6028 + 2.0451i
-1.6028 - 2.0451i
```
这意味着该多项式有三个根,分别为6.0356,-1.6028 + 2.0451i和-1.6028 - 2.0451i。
相关问题
matlab有3个多项式P1(x)=x4+2x3+4x2+5,P2(x)=x+2,P3(x)=x2+2x+3,进行下列操作 1)求P(x)= P1(x)+P2(x)P3(x)。 2)求P(x)=0的根。
MATLAB是一种强大的数值计算环境,非常适合处理数学问题。对于给定的三个多项式:
1. P1(x) = x^4 + 2x^3 + 4x^2 + 5
2. P2(x) = x + 2
3. P3(x) = x^2 + 2x + 3
首先,我们可以使用`polyadd()`函数来求两个多项式的加法,然后结合`polyval()`函数来表示它们的乘积。这里假设我们想先做加法再做乘法:
```matlab
% 定义多项式系数
p1 = [1, 2, 4, 5]; % P1(x)
p2 = [1, 0, 0]; % P2(x)
p3 = [1, 2, 3]; % P3(x)
% 加法 (P1 + P2)
sum_poly = polyadd(p1, p2);
% 乘法 (P1 * P3)
product_poly = polyval(polyconv(p1, p3), ones(size(sum_poly)));
% 结果多项式P(x) = P1(x) + P2(x) * P3(x)
P_x = sum_poly + product_poly;
```
2. 要找到P(x) = 0的根,可以使用`roots()`函数:
```matlab
% 求解方程P(x) = 0的根
zeros_of_P = roots(P_x);
```
现在你有了P(x)的表达式以及它的零点(根)。在实际运行这段代码之前,请确保你已经在MATLAB环境中设置了这些变量。
(1)求 f(x)=1/(1+10x*x)在[-5,5]的插值多项式; (2)介绍并使用至少三种数值积分方法(如多项式插值、埃尔米特、分段插值等),至少考虑两种节点数(5和10);
好的,我明白了。对于你的第一个问题,我们可以使用拉格朗日插值法来求解f(x)在[-5,5]的插值多项式。具体步骤如下:
1. 确定插值节点。在这里,我们可以选择使用等距节点,即x0=-5,x1=-3,x2=-1,x3=1,x4=3,x5=5。
2. 求解插值多项式。根据拉格朗日插值公式,我们可以得到:
L(x) = f(x0)*l0(x) + f(x1)*l1(x) + f(x2)*l2(x) + f(x3)*l3(x) + f(x4)*l4(x) + f(x5)*l5(x)
其中,l0(x)、l1(x)、l2(x)、l3(x)、l4(x)、l5(x)是拉格朗日基函数,它们的表达式为:
l0(x) = (x-x1)(x-x2)(x-x3)(x-x4)(x-x5) / [(x0-x1)(x0-x2)(x0-x3)(x0-x4)(x0-x5)]
l1(x) = (x-x0)(x-x2)(x-x3)(x-x4)(x-x5) / [(x1-x0)(x1-x2)(x1-x3)(x1-x4)(x1-x5)]
l2(x) = (x-x0)(x-x1)(x-x3)(x-x4)(x-x5) / [(x2-x0)(x2-x1)(x2-x3)(x2-x4)(x2-x5)]
l3(x) = (x-x0)(x-x1)(x-x2)(x-x4)(x-x5) / [(x3-x0)(x3-x1)(x3-x2)(x3-x4)(x3-x5)]
l4(x) = (x-x0)(x-x1)(x-x2)(x-x3)(x-x5) / [(x4-x0)(x4-x1)(x4-x2)(x4-x3)(x4-x5)]
l5(x) = (x-x0)(x-x1)(x-x2)(x-x3)(x-x4) / [(x5-x0)(x5-x1)(x5-x2)(x5-x3)(x5-x4)]
将f(x)代入上式计算即得到插值多项式L(x)。
对于你的第二个问题,以下是三种数值积分方法的介绍和使用步骤。
1. 多项式插值方法
多项式插值法是在已知一些离散数据点的基础上,通过构造一个插值多项式来近似原函数,并用该多项式来计算积分值。在此处,我们仍采用拉格朗日插值公式来构造插值多项式。步骤如下:
(1) 确定插值节点。在这里,我们可以选择使用等距节点或者切比雪夫节点。
(2) 求解插值多项式。利用插值节点和对应函数值,利用拉格朗日插值公式求解出插值多项式。
(3) 计算积分值。将插值多项式代入积分公式计算积分值。
2. 埃尔米特方法
埃尔米特方法是利用函数在某些点的函数值和导数值来构造插值多项式。在此处,我们采用三点埃尔米特插值方法。步骤如下:
(1) 确定插值节点。在这里,我们可以选择使用等距节点或者切比雪夫节点。
(2) 求解插值多项式。利用插值节点和对应函数值以及函数导数值,利用三点埃尔米特插值公式求解出插值多项式。
(3) 计算积分值。将插值多项式代入积分公式计算积分值。
3. 分段插值方法
分段插值法是将积分区间分成若干个小区间,在每个小区间内分别构造插值多项式,并用各个小区间的积分值相加来计算整个积分值。在此处,我们采用等距节点分段线性插值方法。步骤如下:
(1) 将积分区间分成若干个小区间。在这里,我们将积分区间[-5,5]等分成5个小区间,每个小区间长度为2。
(2) 在每个小区间内构造插值多项式。利用小区间两个端点的函数值,构造一次多项式来近似原函数。
(3) 计算积分值。将各个小区间的积分值相加得到整个积分值。
对于每种方法,我们可以选择使用5个节点或者10个节点来进行计算。
阅读全文