请用python实现自适应中值滤波
时间: 2023-09-04 16:09:36 浏览: 95
Median-filteraMean-filter.zip_中值滤波 文档_图像增强实验_图像增强文档
好的,请稍等,以下是Python实现自适应中值滤波的代码:
```python
import numpy as np
import cv2
def adaptive_median_filter(img, max_window_size):
# 复制原图像,作为输出结果
out_img = img.copy()
# 获取图像的行列数
rows, cols = img.shape
# 计算中心点的位置
center_pos = max_window_size // 2
for i in range(center_pos, rows - center_pos):
for j in range(center_pos, cols - center_pos):
# 以当前像素点为中心,获取像素值所在窗口
window = img[i - center_pos:i + center_pos + 1, j - center_pos:j + center_pos + 1]
# 获取窗口内的像素值
window_values = window.flatten()
# 对窗口内的像素值进行排序
window_values.sort()
# 计算窗口内像素值的中值
median_value = window_values[max_window_size // 2]
# 计算窗口内像素值的中值与最小值、最大值之间的差值
max_diff = window_values[max_window_size - 1] - window_values[0]
# 如果差值小于等于某个阈值,则使用中值作为当前像素点的像素值
if max_diff <= 50:
out_img[i, j] = median_value
else:
# 如果差值大于阈值,则递增窗口大小,并重复上述步骤
for k in range(3, max_window_size, 2):
window = img[i - k // 2:i + k // 2 + 1, j - k // 2:j + k // 2 + 1]
window_values = window.flatten()
window_values.sort()
median_value = window_values[k // 2]
max_diff = window_values[k - 1] - window_values[0]
if max_diff <= 50:
out_img[i, j] = median_value
break
return out_img
```
希望能对您有所帮助!
阅读全文