卡尔曼滤波递推程序matlab,测量离散值已知
时间: 2023-07-05 09:32:46 浏览: 82
以下是一个简单的基于卡尔曼滤波的递推程序,假设你已经有了系统的状态转移矩阵A、测量矩阵C、过程噪声协方差矩阵Q、测量噪声协方差矩阵R和初始状态估计向量x0和P0。
```matlab
% 定义系统参数
A = ...; % 状态转移矩阵
C = ...; % 测量矩阵
Q = ...; % 过程噪声协方差矩阵
R = ...; % 测量噪声协方差矩阵
x0 = ...; % 初始状态估计向量
P0 = ...; % 初始协方差矩阵
% 定义测量值
z = ...; % 测量值
% 初始化卡尔曼滤波器
x = x0;
P = P0;
% 递推
for k = 1:length(z)
% 预测
x = A*x;
P = A*P*A' + Q;
% 更新
K = P*C'/(C*P*C' + R);
x = x + K*(z(k) - C*x);
P = (eye(size(P)) - K*C)*P;
end
```
注意,这个程序假设你已经知道了测量值z的序列。如果你只有一次测量,你需要将它放到一个尺寸为1的向量中。如果你有多个传感器,在定义测量矩阵C时需要将它们合并成一个矩阵。
阅读全文