写一个可以输出最佳平滑因子的GRNN模型的python代码
时间: 2023-06-16 09:03:08 浏览: 111
基于GRNN神经网络模型,Python
以下是一个基于sklearn库实现的GRNN模型,并使用网格搜索(GridSearchCV)来寻找最佳平滑因子:
```python
from sklearn.kernel_ridge import KernelRidge
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import mean_squared_error
from scipy.spatial.distance import cdist
import numpy as np
# 定义自定义函数,用于计算基函数
def gaussian_kernel(X, y, sigma):
pairwise_dists = cdist(X, y, 'sqeuclidean')
K = np.exp(-pairwise_dists / (2 * sigma ** 2))
return K
# 定义GRNN模型
class GRNN():
def __init__(self, sigma=None):
self.sigma = sigma
self.model = KernelRidge(kernel='precomputed')
def fit(self, X, y):
if self.sigma is None:
# 使用网格搜索来寻找最佳平滑因子
param_grid = {'sigma': np.logspace(-3, 3, 7)}
grnn = GridSearchCV(self, param_grid, cv=5)
grnn.fit(X, y)
self.sigma = grnn.best_params_['sigma']
# 计算基函数矩阵
K = gaussian_kernel(X, X, self.sigma)
# 学习权重
self.model.fit(K, y)
def predict(self, X):
# 计算测试集和训练集之间的距离
pairwise_dists = cdist(X, self.model.X_fit_(), 'sqeuclidean')
# 计算基函数矩阵
K = np.exp(-pairwise_dists / (2 * self.sigma ** 2))
# 预测目标值
y_pred = self.model.predict(K)
return y_pred
# 示例用法
X_train = np.array([[0], [1], [2], [3], [4], [5], [6], [7], [8], [9]])
y_train = np.array([1, 0, 1, 0, 1, 0, 1, 0, 1, 0])
X_test = np.array([[-0.5], [1.5], [2.5], [6.5], [8.5]])
grnn = GRNN()
grnn.fit(X_train, y_train)
y_pred = grnn.predict(X_test)
print(f"最佳平滑因子:{grnn.sigma}")
print(f"预测结果:{y_pred}")
```
注意,以上代码只是一个简单的示例,实际使用时可能需要根据具体情况进行调整。
阅读全文