请使用python写一个能对指定目录内图片进行基于KNN和LDA人脸识别并统计正确率的程序
时间: 2023-02-12 19:57:31 浏览: 158
使用python写一个基于KNN和LDA的人脸识别程序可以使用一些第三方库如OpenCV和scikit-learn来实现。以下是一个简单的示例代码:
```
import os
import cv2
import numpy as np
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
from sklearn.neighbors import KNeighborsClassifier
def read_images(path):
# 读取目录下的图片并返回
images = []
labels = []
for dirpath, dirnames, filenames in os.walk(path):
for filename in [f for f in filenames if f.endswith(".jpg")]:
filepath = os.path.join(dirpath, filename)
image = cv2.imread(filepath)
images.append(image)
labels.append(dirpath.split("/")[-1])
return images, labels
def train_model(images, labels):
# 训练KNN和LDA模型
model_knn = KNeighborsClassifier(n_neighbors=1)
model_lda = LDA()
images = [cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) for image in images]
images = [cv2.resize(image, (92, 112)) for image in images]
images = [image.flatten() for image in images]
model_knn.fit(images, labels)
model_lda.fit(images, labels)
return model_knn, model_lda
def test_model(model_knn, model_lda, images, labels):
# 测试模型并统计正确率
correct = 0
total = 0
for image, label in zip(images, labels):
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
image = cv2.resize(image, (92, 112))
image = image.flatten()
predicted_knn = model_knn.predict([image])[0]
predicted_lda = model_lda.predict([image])[0]
if predicted_knn == label or predicted_lda == label:
correct += 1
total += 1
return correct / total
# 使用示例
path = "path/to/your/images"
images, labels = read_images(path)
model_knn, model_lda = train_model(images, labels)
accuracy = test_model(model_knn, model_lda, images, labels)
print("Accuracy: {:.2f}%".format(accuracy * 100))
```
请注意
阅读全文