pytorch代码实现两个损失函数加权和
时间: 2023-10-07 18:08:47 浏览: 251
可以使用如下的代码实现两个损失函数加权和:
```python
import torch
# 定义两个损失函数
loss1 = torch.nn.CrossEntropyLoss()
loss2 = torch.nn.MSELoss()
# 定义损失函数的权重
weight1 = 0.7
weight2 = 0.3
# 计算加权损失函数
def weighted_loss(loss1, loss2, weight1, weight2, output, target):
loss = weight1 * loss1(output, target) + weight2 * loss2(output, target)
return loss
# 使用示例
output = torch.randn(10, 2)
target = torch.randint(2, size=(10,))
loss = weighted_loss(loss1, loss2, weight1, weight2, output, target)
print(loss.item())
```
该代码实现了使用两个损失函数的加权和来计算总体损失函数,其中`weight1`和`weight2`为两个损失函数的权重。可以根据需求修改权重的值来平衡两个损失函数对总体损失的影响。
相关问题
wbce损失函数pytorch实现
以下是一个简单的 PyTorch 实现 WBCE 损失函数的示例代码:
```python
import torch
def weighted_binary_cross_entropy(output, target, weights=None):
if weights is not None:
assert len(weights) == 2
loss = F.binary_cross_entropy(output, target, reduction='none')
if weights is not None:
assert (weights >= 0).all()
assert weights[0] + weights[1] > 0
loss = weights[1] * target * loss + weights[0] * (1 - target) * loss
else:
loss = torch.mean(loss)
return loss
```
其中,`output` 是模型的输出,`target` 是目标值。`weights` 是权重,是一个长度为 2 的列表,包含两个元素,分别是负样本和正样本的权重。
该函数首先使用 PyTorch 自带的二分类交叉熵函数 `F.binary_cross_entropy` 计算二分类交叉熵损失,然后根据权重对损失进行加权。如果没有传入权重,则对所有样本的损失取平均值。最后返回计算得到的损失。
阅读全文
相关推荐

















