pytorch代码实现两个损失函数加权和
时间: 2023-10-07 08:08:47 浏览: 192
可以使用如下的代码实现两个损失函数加权和:
```python
import torch
# 定义两个损失函数
loss1 = torch.nn.CrossEntropyLoss()
loss2 = torch.nn.MSELoss()
# 定义损失函数的权重
weight1 = 0.7
weight2 = 0.3
# 计算加权损失函数
def weighted_loss(loss1, loss2, weight1, weight2, output, target):
loss = weight1 * loss1(output, target) + weight2 * loss2(output, target)
return loss
# 使用示例
output = torch.randn(10, 2)
target = torch.randint(2, size=(10,))
loss = weighted_loss(loss1, loss2, weight1, weight2, output, target)
print(loss.item())
```
该代码实现了使用两个损失函数的加权和来计算总体损失函数,其中`weight1`和`weight2`为两个损失函数的权重。可以根据需求修改权重的值来平衡两个损失函数对总体损失的影响。
相关问题
wbce损失函数pytorch实现
以下是一个简单的 PyTorch 实现 WBCE 损失函数的示例代码:
```python
import torch
def weighted_binary_cross_entropy(output, target, weights=None):
if weights is not None:
assert len(weights) == 2
loss = F.binary_cross_entropy(output, target, reduction='none')
if weights is not None:
assert (weights >= 0).all()
assert weights[0] + weights[1] > 0
loss = weights[1] * target * loss + weights[0] * (1 - target) * loss
else:
loss = torch.mean(loss)
return loss
```
其中,`output` 是模型的输出,`target` 是目标值。`weights` 是权重,是一个长度为 2 的列表,包含两个元素,分别是负样本和正样本的权重。
该函数首先使用 PyTorch 自带的二分类交叉熵函数 `F.binary_cross_entropy` 计算二分类交叉熵损失,然后根据权重对损失进行加权。如果没有传入权重,则对所有样本的损失取平均值。最后返回计算得到的损失。
Focal 损失函数代码如下:def focal_loss(input_values, gamma): """Computes the focal loss""" p = torch.exp(-input_values) loss = (1 - p) ** gamma * input_values return loss.mean() class FocalLoss(nn.Module): def init(self, weight=None, gamma=0.): super(FocalLoss, self).init() assert gamma >= 0 self.gamma = gamma self.weight = weight def forward(self, input, target): return focal_loss(F.cross_entropy(input, target, reduction='none', weight=self.weight), self.gamma) LDAM损失函数代码如下:class LDAMLoss(nn.Module): def init(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).init() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s self.weight = weight def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index.scatter_(1, target.data.view(-1, 1), 1) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(0,1)) batch_m = batch_m.view((-1, 1)) x_m = x - batch_m output = torch.where(index, x_m, x) return F.cross_entropy(self.s*output, target, weight=self.weight) Large Margin aware Focal (LMF) 损失函数是 Focal 损失函数和 LDAM损失函数加权的线性组合,帮我用pytorch代码实现LMF损失函数并在模型中使用
LMF损失函数的代码如下:
```
class LMF_Loss(nn.Module):
def __init__(self, cls_num_list, max_m=0.5, weight=None, s=30, gamma=2.0, alpha=0.25):
super(LMF_Loss, self).__init__()
self.focal_loss = FocalLoss(weight=weight, gamma=gamma)
self.ldam_loss = LDAMLoss(cls_num_list=cls_num_list, max_m=max_m, weight=weight, s=s)
self.alpha = alpha
def forward(self, x, target):
focal_loss = self.focal_loss(x, target)
ldam_loss = self.ldam_loss(x, target)
output = self.alpha * ldam_loss + (1 - self.alpha) * focal_loss
return output
```
在模型中使用时,可以将LMF_Loss作为损失函数进行指定。
例如,如果你的模型是一个分类模型,可以这样定义:
```
model = MyModel()
criterion = LMF_Loss(cls_num_list=[class0_num, class1_num, class2_num], max_m=0.5, weight=class_weights, s=30, gamma=2.0, alpha=0.25)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
for epoch in range(num_epochs):
# Forward pass
outputs = model(inputs)
loss = criterion(outputs, labels)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
```
其中,`cls_num_list`是一个列表,包含每个类别的样本数量,`max_m`是LDAM损失函数中的超参数,`weight`是样本权重,`s`是LDAM损失函数中的超参数,`gamma`是Focal损失函数中的超参数,`alpha`是LMF损失函数中的超参数,控制两个损失函数的加权。
阅读全文