请写出matlab的canopy算法
时间: 2024-02-11 12:09:22 浏览: 101
Canopy-Clustering-on-Hadoop
以下是Matlab中的Canopy算法的示例代码:
```matlab
function [clusters, centers] = canopy(data, T1, T2)
% data: 数据集,每行代表一个样本
% T1: Canopy1与Canopy2之间的距离阈值
% T2: Canopy2与Canopy3之间的距离阈值
% 计算样本之间的欧式距离
[n, m] = size(data); % n为样本数,m为特征数
dist = zeros(n, n);
for i = 1:n
for j = i+1:n
d = sqrt(sum((data(i,:) - data(j,:)).^2));
dist(i,j) = d;
dist(j,i) = d;
end
end
% Canopy1聚类
canopy1 = [];
while ~isempty(data)
i = randi(size(data, 1));
c = data(i,:);
canopy1 = [canopy1; i];
dist_to_c = dist(i,:);
data(dist_to_c <= T1, :) = []; % 从数据集中删除与c距离小于T1的样本
end
% Canopy2聚类
canopy2 = [];
while ~isempty(data)
i = randi(size(data, 1));
c = data(i,:);
canopy2 = [canopy2; i];
dist_to_c = dist(i,:);
data(dist_to_c <= T2, :) = []; % 从数据集中删除与c距离小于T2的样本
end
% Canopy3聚类
canopy3 = [];
if ~isempty(data)
canopy3 = 1:size(data,1);
end
% 计算聚类中心
centers = zeros(3, m);
for i = 1:3
if isempty(eval(['canopy' num2str(i)]))
centers(i,:) = nan;
else
centers(i,:) = mean(data(eval(['canopy' num2str(i)]), :));
end
end
% 分配样本到聚类
clusters = zeros(n, 1);
for i = 1:n
p = data(i,:);
dist_to_centers = zeros(3, 1);
for j = 1:3
if ~isnan(centers(j,:))
dist_to_centers(j) = sqrt(sum((p - centers(j,:)).^2));
else
dist_to_centers(j) = inf;
end
end
[~, k] = min(dist_to_centers);
clusters(i) = k;
end
end
```
该算法的主要思路是通过计算样本之间的距离,在数据集中随机选择一个样本作为Canopy1的中心,将距离该中心小于阈值T1的所有样本分配到Canopy1中;然后在剩余的样本中随机选择一个样本作为Canopy2的中心,将距离该中心小于阈值T2但大于T1的所有样本分配到Canopy2中;最后将剩余的样本分配到Canopy3中。然后通过计算每个Canopy的聚类中心,将剩余的样本分配到最近的Canopy中,即可完成聚类。
阅读全文