磁耦合谐振式无线电能传输闭环PI控制 simulink

时间: 2023-06-20 09:07:08 浏览: 180
磁耦合谐振式无线电能传输闭环PI控制是一种无线电能传输方式,通过磁耦合谐振式电路,将电能从发射端无线传输到接收端。为了保证传输效率和稳定性,需要对系统进行闭环控制,其中PI控制是一种常见的控制方式。 Simulink是一种基于模型的设计和仿真环境,可以用于建立系统模型、进行仿真和分析等工作。在Simulink中,可以使用各种模块来搭建系统模型,同时也可以使用MATLAB语言进行控制算法的编写和调试。 下面是一个简单的磁耦合谐振式无线电能传输闭环PI控制Simulink模型示意图: ![Simulink示意图](https://img-blog.csdn.net/20180413172630707) 其中,磁耦合谐振式电路模块用于实现无线能量传输,系统控制器模块用于实现闭环控制,传输效率和稳定性可以通过调整PI控制器的参数来进行优化。 需要注意的是,磁耦合谐振式无线电能传输系统涉及到高频电路和电磁场等领域,需要具备相关专业的知识和技能才能进行设计和开发。
相关问题

磁耦合谐振式无线电能传输频率跟踪控制闭环 simulink

磁耦合谐振式无线电能传输系统可以通过频率跟踪控制闭环来实现系统的稳定运行。Simulink 是一个常用的系统仿真工具,可以用于模拟和分析系统的动态特性。下面是一个简单的磁耦合谐振式无线电能传输系统的Simulink模型,包括频率跟踪控制闭环: ![Simulink model](https://img-blog.csdnimg.cn/20211104155923658.png) 该模型包括以下组件: 1. 信号发生器:产生一个正弦波信号,作为输入信号。 2. 磁耦合谐振器:将输入信号通过磁耦合谐振器进行无线电能传输。 3. 接收端磁耦合谐振器:接收无线电能并产生输出信号。 4. 锁相环(PLL):通过比较接收端磁耦合谐振器输出信号和参考信号,产生一个控制信号,用于调整接收端磁耦合谐振器的频率。 5. 低通滤波器:对控制信号进行滤波,去除高频噪声。 6. 电压控制振荡器(VCO):根据滤波后的控制信号,产生一个频率可调的正弦波信号,作为接收端磁耦合谐振器的输入信号。 在该模型中,PLL和VCO组成了频率跟踪控制闭环。PLL通过比较接收端磁耦合谐振器输出信号和参考信号,产生一个控制信号,用于调整接收端磁耦合谐振器的频率。VCO根据滤波后的控制信号,产生一个频率可调的正弦波信号,作为接收端磁耦合谐振器的输入信号。通过这个闭环控制系统,可以实现磁耦合谐振式无线电能传输系统的稳定运行。 需要注意的是,该模型是一个简单的示例,实际应用中可能需要更复杂的控制系统来实现更高效、更稳定的无线电能传输。

磁耦合谐振式无线电能传输频率跟踪控制simulink

磁耦合谐振式无线电能传输是一种无线电能传输技术,其原理是利用磁耦合谐振器将电能从发射端传输到接收端。在这种技术中,频率跟踪控制是非常重要的,可以保证传输效率和传输距离。 Simulink是一种基于模型的设计和仿真环境,可以用于设计和仿真各种控制系统。在Simulink中,可以使用各种信号处理和控制模块来实现频率跟踪控制。 具体实现方法如下: 1. 设计磁耦合谐振式无线电能传输电路,并确定传输频率范围。 2. 在Simulink中使用Sine Wave Generator模块产生频率为传输频率范围内的正弦波信号。 3. 将正弦波信号输入到磁耦合谐振器中,并将接收端输出的电能信号输入到Simulink中。 4. 在Simulink中使用Bandpass Filter模块对接收到的电能信号进行滤波,以提取传输频率的信号。 5. 使用Phase-Locked Loop (PLL)模块实现频率锁定,将接收到的传输频率信号与发送端的信号进行比较,以实现频率跟踪控制。 6. 可以通过Simulink中的Scope模块来观察接收到的频率信号和锁定后的频率信号,以验证频率跟踪控制的效果。 总之,Simulink可以提供一个完整的仿真环境来设计和测试磁耦合谐振式无线电能传输系统的频率跟踪控制算法。

相关推荐

最新推荐

recommend-type

基于环形交叉耦合结构的多电机比例同步控制

针对多电机同步控制,国内外学者提出...最后文章应用Matlab/Simulink对环形交叉耦合结构进行了计算机仿真,仿真结果表明,该环形交叉耦合结构模糊PID控制算法收敛速度快、稳定性能好,能很好的实现多电机比例协同控制。
recommend-type

SPWM波控制单相逆变双闭环PID调节器Simulink建模仿真

PID调节器是逆变器中不可或缺的部分,PID调节器的好坏直接影响到逆变器的输出性能和带载能力。文中构建了10 KVA的单相SPWM逆变器...将此建模思想移植到10 K模块化单相UPS电源上,控制精度和准度,均能达到预期的效果。
recommend-type

基于双闭环模糊PID控制器的开关电源控制

本文基于Buck变换器提出了一种采用输出电压、输出电流进行双闭环控制的模糊PID(F-PID)控制方法。并通过Matlab/Simulink和Cadence PSpice联合仿真验证了该新型控制方法具有很好的稳定和瞬态响应性能。
recommend-type

基于MATLAB-Simulink模型的交流传动高性能控制(英文版)

High Performance Control of AC Drives with MATLAB Simulink Models by Haitham AbuRub, Atif Iqbal, Jaroslaw Guzinski
recommend-type

电力电子matlab【simulink】之2三相桥式全控整流实验报告

包含:2三相桥式全控整流电路的电路原理图、仿真电路图、仿真波形图,跑过仿真无误,是自己的大作业最终版
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。