写一份pytorch的股价预测模型
时间: 2023-06-11 22:08:00 浏览: 180
好的,为了编写股价预测模型,我们需要以下步骤:
1. 数据预处理:将原始股价数据进行清洗、归一化等处理,使其更易于模型训练。
2. 构建模型:我们可以使用LSTM或GRU等递归神经网络模型来构建股价预测模型。
3. 模型训练:使用训练数据集对模型进行训练。
4. 模型测试:使用测试数据集对模型进行测试,评估其预测性能。
下面是一个简单的股价预测模型示例,使用PyTorch实现。
首先,我们需要导入必要的库和模块:
```python
import torch
import torch.nn as nn
import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler
```
然后,我们可以定义一个函数,用于加载和预处理股价数据:
```python
def load_data(filename, sequence_length):
data = pd.read_csv(filename, index_col=0)
data = data.dropna()
# 使用MinMaxScaler进行数据归一化
scaler = MinMaxScaler()
data = scaler.fit_transform(data)
result = []
for index in range(len(data) - sequence_length):
result.append(data[index: index + sequence_length])
result = np.array(result)
row = round(0.9 * result.shape[0])
train = result[:int(row), :]
np.random.shuffle(train)
x_train = train[:, :-1]
y_train = train[:, -1][:,-1]
x_test = result[int(row):, :-1]
y_test = result[int(row):, -1][:,-1]
x_train = torch.from_numpy(x_train).type(torch.Tensor)
x_test = torch.from_numpy(x_test).type(torch.Tensor)
y_train = torch.from_numpy(y_train).type(torch.Tensor)
y_test = torch.from_numpy(y_test).type(torch.Tensor)
return x_train, y_train, x_test, y_test, scaler
```
这个函数将会从文件中读入原始数据,进行清洗和归一化,然后将其转换为序列数据。最后,它会将序列数据拆分为训练集和测试集,并将它们转换为PyTorch张量。
接下来,我们可以定义一个LSTM模型:
```python
class LSTM(nn.Module):
def __init__(self, input_size=1, hidden_size=100, output_size=1, num_layers=1):
super().__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).requires_grad_()
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).requires_grad_()
out, (hn, cn) = self.lstm(x, (h0.detach(), c0.detach()))
out = self.fc(out[:, -1, :])
return out
```
这个模型包含一个LSTM层和一个全连接层。在前向传播中,我们首先将输入数据传递到LSTM层中,然后将最后一个时间步的输出传递到全连接层中,以获得最终的预测值。
现在,我们可以定义一个函数,用于训练和测试模型:
```python
def train_and_test(filename, sequence_length, num_epochs, learning_rate):
x_train, y_train, x_test, y_test, scaler = load_data(filename, sequence_length)
lstm = LSTM()
loss_function = nn.MSELoss()
optimizer = torch.optim.Adam(lstm.parameters(), lr=learning_rate)
train_loss = []
test_loss = []
for i in range(num_epochs):
lstm.train()
train_predict = lstm(x_train)
loss = loss_function(train_predict, y_train)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss.append(loss.item())
if i % 10 == 0:
lstm.eval()
test_predict = lstm(x_test)
loss = loss_function(test_predict, y_test)
test_loss.append(loss.item())
print('Epoch {} train loss: {:.6f}, test loss: {:.6f}'.format(i, train_loss[-1], test_loss[-1]))
# 将预测结果反归一化
y_train = scaler.inverse_transform(y_train.reshape(-1, 1))
y_test = scaler.inverse_transform(y_test.reshape(-1, 1))
train_predict = scaler.inverse_transform(train_predict.detach().numpy())
test_predict = scaler.inverse_transform(test_predict.detach().numpy())
return y_train, train_predict, y_test, test_predict
```
这个函数将会使用给定的超参数训练模型,并返回训练集和测试集的预测结果。
最后,我们可以使用以下代码运行模型:
```python
filename = 'data.csv'
sequence_length = 5
num_epochs = 100
learning_rate = 0.01
y_train, train_predict, y_test, test_predict = train_and_test(filename, sequence_length, num_epochs, learning_rate)
```
在这里,我们使用了一个包含5个时间步的序列来预测股价。我们将训练模型100个时期,并使用0.01的学习率进行优化。
这是一个简单的股价预测模型示例,您可以根据自己的需求进行修改和扩展。
阅读全文