如何用Python画兔子
时间: 2023-03-05 16:21:02 浏览: 142
python 实现养兔子
5星 · 资源好评率100%
以下是一个基于PyTorch的多个条件的条件对抗生成网络(Conditional GAN)的示例代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
from torch.autograd import Variable
class Generator(nn.Module):
def __init__(self, input_dim, output_dim, num_filters):
super(Generator, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.num_filters = num_filters
self.net = nn.Sequential(
nn.Linear(input_dim, num_filters),
nn.ReLU(),
nn.Linear(num_filters, num_filters*2),
nn.ReLU(),
nn.Linear(num_filters*2, num_filters*4),
nn.ReLU(),
nn.Linear(num_filters*4, output_dim),
nn.Tanh()
)
def forward(self, x):
x = self.net(x)
return x
class Discriminator(nn.Module):
def __init__(self, input_dim, num_filters):
super(Discriminator, self).__init__()
self.input_dim = input_dim
self.num_filters = num_filters
self.net = nn.Sequential(
nn.Linear(input_dim, num_filters*4),
nn.LeakyReLU(0.2),
nn.Linear(num_filters*4, num_filters*2),
nn.LeakyReLU(0.2),
nn.Linear(num_filters*2, num_filters),
nn.LeakyReLU(0.2),
nn.Linear(num_filters, 1),
nn.Sigmoid()
)
def forward(self, x):
x = self.net(x)
return x
class ConditionalGAN(object):
def __init__(self, input_dim, output_dim, num_filters, learning_rate):
self.generator = Generator(input_dim, output_dim, num_filters)
self.discriminator = Discriminator(input_dim+1, num_filters)
self.optimizer_G = optim.Adam(self.generator.parameters(), lr=learning_rate)
self.optimizer_D = optim.Adam(self.discriminator.parameters(), lr=learning_rate)
def train(self, data_loader, num_epochs):
for epoch in range(num_epochs):
for i, (inputs, labels) in enumerate(data_loader):
# Train discriminator with real data
real_inputs = Variable(inputs)
real_labels = Variable(labels)
real_labels = real_labels.view(real_labels.size(0), 1)
real_inputs = torch.cat((real_inputs, real_labels), 1)
real_outputs = self.discriminator(real_inputs)
real_loss = nn.BCELoss()(real_outputs, torch.ones(real_outputs.size()))
# Train discriminator with fake data
noise = Variable(torch.randn(inputs.size(0), self.generator.input_dim))
fake_labels = Variable(torch.LongTensor(inputs.size(0)).random_(0, 10))
fake_labels = fake_labels.view(fake_labels.size(0), 1)
fake_inputs = self.generator(torch.cat((noise, fake_labels.float()), 1))
fake_inputs = torch.cat((fake_inputs, fake_labels), 1)
fake_outputs = self.discriminator(fake_inputs)
fake_loss = nn.BCELoss()(fake_outputs, torch.zeros(fake_outputs.size()))
# Backpropagate and update weights for discriminator
discriminator_loss = real_loss + fake_loss
self.discriminator.zero_grad()
discriminator_loss.backward()
self.optimizer_D.step()
# Train generator
noise = Variable(torch.randn(inputs.size(0), self.generator.input_dim))
fake_labels = Variable(torch.LongTensor(inputs.size(0)).random_(0,
阅读全文