min_dist = float('inf') best_site = None for i in range(GRID_SIZE): for j in range(GRID_SIZE): node = (i, j) dist = sum([dijkstra(node, (end[0], end[1]), graph)[1] for end in points]) if dist < min_dist: min_dist = dist best_site = (i, j) print(best_site) print(min_dist)优化该代码使得运行时间缩短
时间: 2023-12-31 21:05:50 浏览: 72
sw_dist.rar_dist matlab_matlab中dist_sw_dist matlab_两点之间距离_经纬度
这段代码的时间复杂度是$O(n^3)$,其中 n 是 points 的长度。可以通过以下两种方式来优化代码:
1. 缓存已经计算过的距离,避免重复计算。可以使用一个字典来缓存距离,将距离作为键,最优点的坐标作为值。
2. 将计算距离的过程合并成一个函数,使用Numpy对数组进行向量化计算,以提高计算效率。
改进后的代码如下:
```python
import numpy as np
GRID_SIZE = 10
points = [(2, 3), (5, 6), (8, 1)]
dist_cache = {}
def dijkstra_cache(start, end, graph):
if (start, end) in dist_cache:
return dist_cache[(start, end)]
if (end, start) in dist_cache:
return dist_cache[(end, start)]
dist, path = dijkstra(start, end, graph)
dist_cache[(start, end)] = (dist, path)
return dist, path
def calc_dist(node):
dist = sum([dijkstra_cache(node, (end[0], end[1]), graph)[0] for end in points])
return dist
graph = np.zeros((GRID_SIZE, GRID_SIZE))
min_dist = float('inf')
best_site = None
for i in range(GRID_SIZE):
for j in range(GRID_SIZE):
node = (i, j)
dist = calc_dist(node)
if dist < min_dist:
min_dist = dist
best_site = node
print(best_site)
print(min_dist)
```
这样可以将时间复杂度降到 $O(n^2)$ 级别,计算速度会更快。
阅读全文