四阶Runge-Kutta方法编程求解微分方程f = Dy \ Dx == y - 2 * x / (y + sin(x) + exp(x))
时间: 2024-03-25 11:36:09 浏览: 68
好的,下面是用 MATLAB 编写四阶 Runge-Kutta 方法求解微分方程的示例代码:
```matlab
% 定义微分方程 f = Dy/Dx = y - 2x / (y + sin(x) + exp(x))
syms x y
Dx = diff(y, x);
Dy = diff(y, y);
f = Dy / Dx == y - 2 * x / (y + sin(x) + exp(x));
% 将微分方程转化为匿名函数
f_fun = matlabFunction(f, 'Vars', {'x', 'y'});
% 定义初始条件
x0 = 0;
y0 = 1;
% 定义步长和计算区间
h = 0.1;
xspan = [0, 1];
% 计算步数
n = round((xspan(2) - xspan(1)) / h);
% 初始化
x = zeros(n+1, 1);
y = zeros(n+1, 1);
x(1) = x0;
y(1) = y0;
% 计算
for i = 1:n
k1 = f_fun(x(i), y(i));
k2 = f_fun(x(i) + h/2, y(i) + h/2*k1);
k3 = f_fun(x(i) + h/2, y(i) + h/2*k2);
k4 = f_fun(x(i) + h, y(i) + h*k3);
y(i+1) = y(i) + h/6*(k1 + 2*k2 + 2*k3 + k4);
x(i+1) = x(i) + h;
end
% 绘制图像
plot(x, y);
xlabel('x');
ylabel('y');
title('Solution of Dy/Dx = y - 2x / (y + sin(x) + exp(x))');
```
在上述代码中,我们先将输入的微分方程转化为匿名函数 `f_fun`,然后使用四阶 Runge-Kutta 方法计算 `y(i+1)` 的值,最后将计算结果绘制成图像。
请注意,这只是一个简单的示例,如果需要求解其他的微分方程,还需要根据具体情况进行修改。
阅读全文