relief算法改进版c语言
时间: 2024-02-04 22:02:19 浏览: 145
在C语言中实现改进版的relief算法,可以按照以下步骤进行:
1. 定义数据结构:首先需要定义一个数据结构来表示样本数据,该数据结构可以包括特征值和类别标签。
```
typedef struct {
double *features; // 特征值
int label; // 类别标签
} Sample;
```
2. 加载数据:从文件中读取样本数据,并将其存储到一个数组中。
```
Sample *load_samples(char *filename, int num_samples, int num_features)
{
FILE *fp;
Sample *samples;
int i, j;
fp = fopen(filename, "r");
if (fp == NULL) {
fprintf(stderr, "Error: cannot open file %s\n", filename);
exit(EXIT_FAILURE);
}
samples = (Sample *)malloc(num_samples * sizeof(Sample));
if (samples == NULL) {
fprintf(stderr, "Error: cannot allocate memory for samples\n");
exit(EXIT_FAILURE);
}
for (i = 0; i < num_samples; i++) {
samples[i].features = (double *)malloc(num_features * sizeof(double));
if (samples[i].features == NULL) {
fprintf(stderr, "Error: cannot allocate memory for features\n");
exit(EXIT_FAILURE);
}
for (j = 0; j < num_features; j++) {
fscanf(fp, "%lf", &samples[i].features[j]);
}
fscanf(fp, "%d", &samples[i].label);
}
fclose(fp);
return samples;
}
```
3. 计算距离:定义一个函数来计算两个样本之间的欧几里得距离。
```
double distance(double *a, double *b, int num_features)
{
int i;
double sum = 0.0;
for (i = 0; i < num_features; i++) {
sum += (a[i] - b[i]) * (a[i] - b[i]);
}
return sqrt(sum);
}
```
4. 计算邻域:定义一个函数来计算每个样本的近邻样本,并将其存储到一个邻域矩阵中。
```
void compute_neighbors(Sample *samples, int num_samples, int num_features, int **neighbors, int k)
{
int i, j, l;
double dist;
int *indices;
double *dists;
indices = (int *)malloc(num_samples * sizeof(int));
if (indices == NULL) {
fprintf(stderr, "Error: cannot allocate memory for indices\n");
exit(EXIT_FAILURE);
}
dists = (double *)malloc(num_samples * sizeof(double));
if (dists == NULL) {
fprintf(stderr, "Error: cannot allocate memory for dists\n");
exit(EXIT_FAILURE);
}
for (i = 0; i < num_samples; i++) {
for (j = 0; j < k; j++) {
indices[j] = j;
dists[j] = distance(samples[i].features, samples[j].features, num_features);
}
for (j = k; j < num_samples; j++) {
dist = distance(samples[i].features, samples[j].features, num_features);
for (l = 0; l < k; l++) {
if (dist < dists[l]) {
memmove(&indices[l+1], &indices[l], (k-l-1) * sizeof(int));
memmove(&dists[l+1], &dists[l], (k-l-1) * sizeof(double));
indices[l] = j;
dists[l] = dist;
break;
}
}
}
for (j = 0; j < k; j++) {
neighbors[i][j] = indices[j];
}
}
free(indices);
free(dists);
}
```
5. 计算权重:定义一个函数来计算每个特征的权重,并将其存储到一个权重向量中。
```
void compute_weights(Sample *samples, int num_samples, int num_features, int **neighbors, int k, double *weights)
{
int i, j, l;
double diff;
for (i = 0; i < num_features; i++) {
weights[i] = 0.0;
for (j = 0; j < num_samples; j++) {
for (l = 0; l < k; l++) {
if (samples[neighbors[j][l]].label != samples[j].label) {
diff = samples[j].features[i] - samples[neighbors[j][l]].features[i];
weights[i] += fabs(diff);
break;
}
}
}
weights[i] /= (double)(num_samples * k);
}
}
```
6. 计算偏移:定义一个函数来计算每个特征的偏移量,并将其存储到一个偏移向量中。
```
void compute_offsets(Sample *samples, int num_samples, int num_features, int **neighbors, int k, double *weights, double *offsets)
{
int i, j, l;
double diff;
for (i = 0; i < num_features; i++) {
offsets[i] = 0.0;
for (j = 0; j < num_samples; j++) {
for (l = 0; l < k; l++) {
if (samples[neighbors[j][l]].label != samples[j].label) {
diff = samples[j].features[i] - samples[neighbors[j][l]].features[i];
offsets[i] += weights[i] * diff;
break;
}
}
}
offsets[i] /= (double)(num_samples * k);
}
}
```
7. 计算新特征:定义一个函数来计算每个样本的新特征,并将其存储到一个新特征矩阵中。
```
void compute_new_features(Sample *samples, int num_samples, int num_features, double *weights, double *offsets, double **new_features)
{
int i, j;
for (i = 0; i < num_samples; i++) {
new_features[i] = (double *)malloc(num_features * sizeof(double));
if (new_features[i] == NULL) {
fprintf(stderr, "Error: cannot allocate memory for new features\n");
exit(EXIT_FAILURE);
}
for (j = 0; j < num_features; j++) {
new_features[i][j] = samples[i].features[j] - weights[j] * samples[i].label - offsets[j];
}
}
}
```
8. 应用算法:将以上步骤组合在一起,定义一个函数来应用改进版的relief算法。
```
void relief_improved(Sample *samples, int num_samples, int num_features, int k, double *weights, double *offsets, double **new_features)
{
int **neighbors;
int i;
neighbors = (int **)malloc(num_samples * sizeof(int *));
if (neighbors == NULL) {
fprintf(stderr, "Error: cannot allocate memory for neighbors\n");
exit(EXIT_FAILURE);
}
for (i = 0; i < num_samples; i++) {
neighbors[i] = (int *)malloc(k * sizeof(int));
if (neighbors[i] == NULL) {
fprintf(stderr, "Error: cannot allocate memory for neighbors\n");
exit(EXIT_FAILURE);
}
}
compute_neighbors(samples, num_samples, num_features, neighbors, k);
compute_weights(samples, num_samples, num_features, neighbors, k, weights);
compute_offsets(samples, num_samples, num_features, neighbors, k, weights, offsets);
compute_new_features(samples, num_samples, num_features, weights, offsets, new_features);
for (i = 0; i < num_samples; i++) {
free(neighbors[i]);
}
free(neighbors);
}
```
这样,我们就可以使用以上函数来实现改进版的relief算法了。
阅读全文