relief算法优化版c语言
时间: 2024-02-04 21:02:19 浏览: 72
以下是基于Relief算法的优化版C语言代码实现:
```c
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#define MAX_FEATURES 100 //最大特征数
#define MAX_SAMPLES 1000 //最大样本数
#define MAX_ITERATIONS 100 //最大迭代次数
#define K_NEIGHBORS 5 //K近邻数量
#define ALPHA 0.5 //衰减因子
#define THRESHOLD 0.0 //特征权重阈值
double data[MAX_SAMPLES][MAX_FEATURES]; //样本特征数据
int labels[MAX_SAMPLES]; //样本标签数据
double weights[MAX_FEATURES]; //特征权重
int num_features; //特征数
int num_samples; //样本数
int num_iterations; //迭代次数
//计算两个样本的欧几里得距离
double euclidean_distance(int sample1, int sample2) {
double distance = 0.0;
for (int i = 0; i < num_features; i++) {
distance += pow(data[sample1][i] - data[sample2][i], 2);
}
return sqrt(distance);
}
//计算样本与其K个最近邻之间的权重更新值
void compute_weights(int sample_index) {
//计算K个最近邻
int neighbors[K_NEIGHBORS];
double distances[K_NEIGHBORS];
for (int i = 0; i < K_NEIGHBORS; i++) {
neighbors[i] = -1;
distances[i] = INFINITY;
}
for (int i = 0; i < num_samples; i++) {
if (i == sample_index) continue;
double distance = euclidean_distance(sample_index, i);
for (int j = 0; j < K_NEIGHBORS; j++) {
if (distance < distances[j]) {
for (int k = K_NEIGHBORS - 1; k > j; k--) {
neighbors[k] = neighbors[k - 1];
distances[k] = distances[k - 1];
}
neighbors[j] = i;
distances[j] = distance;
break;
}
}
}
//更新特征权重
for (int i = 0; i < num_features; i++) {
double sum = 0.0;
for (int j = 0; j < K_NEIGHBORS; j++) {
double diff = data[sample_index][i] - data[neighbors[j]][i];
sum += pow(diff, 2);
}
weights[i] -= (sum / K_NEIGHBORS) * ALPHA;
}
}
//Relief算法主函数
void relief() {
//初始化特征权重
for (int i = 0; i < num_features; i++) {
weights[i] = 0.0;
}
//迭代更新特征权重
for (int i = 0; i < num_iterations; i++) {
int sample_index = rand() % num_samples;
compute_weights(sample_index);
}
}
//读取样本数据函数
void read_data(char* filename) {
FILE* fp = fopen(filename, "r");
if (fp == NULL) {
printf("Error: cannot open file.\n");
exit(1);
}
//读取特征数和样本数
fscanf(fp, "%d %d", &num_features, &num_samples);
//读取样本特征和标签数据
for (int i = 0; i < num_samples; i++) {
for (int j = 0; j < num_features; j++) {
fscanf(fp, "%lf", &data[i][j]);
}
fscanf(fp, "%d", &labels[i]);
}
fclose(fp);
}
//输出特征权重函数
void print_weights() {
for (int i = 0; i < num_features; i++) {
if (weights[i] > THRESHOLD || weights[i] < -THRESHOLD) {
printf("Feature %d: %lf\n", i + 1, weights[i]);
}
}
}
int main(int argc, char* argv[]) {
if (argc != 4) {
printf("Usage: ./relief <data_file> <num_iterations> <threshold>\n");
exit(1);
}
//读取命令行参数
num_iterations = atoi(argv[2]);
THRESHOLD = atof(argv[3]);
//读取样本数据
read_data(argv[1]);
//运行Relief算法
relief();
//输出特征权重
print_weights();
return 0;
}
```
其中,`data`数组存储样本特征数据,`labels`数组存储样本标签数据,`weights`数组存储特征权重。`euclidean_distance`函数计算两个样本的欧几里得距离,`compute_weights`函数计算样本与其K个最近邻之间的权重更新值,`relief`函数是Relief算法的主函数。使用`read_data`函数读取样本数据,使用`print_weights`函数输出特征权重。在`main`函数中,读取命令行参数,运行Relief算法,输出特征权重。
阅读全文