动力定位船在有干扰情况下的轨迹跟踪代码
时间: 2024-05-04 21:18:42 浏览: 198
动力定位船在有干扰情况下的轨迹跟踪是一个相对复杂的问题,需要考虑多种因素,例如船舶动力系统的响应特性、环境干扰、传感器精度等等。以下是一个简单的基于模型预测控制(MPC)的轨迹跟踪示例代码,可以作为参考:
```python
import numpy as np
from scipy.integrate import solve_ivp
from scipy.optimize import minimize
# 系统模型参数
m = 1000.0
Iz = 1000.0
x_g = 0.0
l = 10.0
d = 2.0
k = 10.0
c = 1.0
# MPC参数
N = 10
dt = 0.1
Q = np.diag([1.0, 1.0, 1.0, 1.0])
R = np.diag([1.0, 1.0])
# 参考轨迹
x_ref = np.array([0.0, 0.0, 0.0, 0.0])
# 状态量(x, y, psi, u, v, r)
x = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0])
# 限制条件
u_min = np.array([-1.0, -1.0])
u_max = np.array([1.0, 1.0])
delta_u_min = np.array([-0.1, -0.1])
delta_u_max = np.array([0.1, 0.1])
# 状态量演化函数
def dynamics(t, x, u):
psi = x[2]
u1 = x[3]
u2 = x[4]
r = x[5]
N1 = u[0]
N2 = u[1]
c11 = 2.0*m - d*l*np.cos(psi)
c12 = d*l*np.sin(psi)
c21 = d*l*np.sin(psi)
c22 = 2.0*Iz - d*l**2
det_c = c11*c22 - c12*c21
inv_c = np.array([[c22, -c12], [-c21, c11]])/det_c
b = np.array([np.cos(psi), np.sin(psi)])
f = np.array([k*(u1 - u[0]), k*(u2 - u[1])])
g = np.array([l*k*(N1 + N2), d*k*(N2 - N1)])
x_dot = np.zeros_like(x)
x_dot[0:2] = np.matmul(np.diag([u1, u2]), b)
x_dot[2] = r
x_dot[3:5] = np.matmul(inv_c, f - np.matmul(np.diag([u1, u2]), g))
x_dot[5] = (l*(N1 - N2) - c*r)/Iz
return x_dot
# 损失函数
def cost(u, x, x_ref):
J = 0.0
for i in range(N):
t = i*dt
x = solve_ivp(dynamics, [t, t+dt], x, args=(u[i,:]), rtol=1e-6, atol=1e-6).y[:,-1]
error = x - x_ref
J += np.matmul(np.matmul(error.T, Q), error)
if i < N-1:
delta_u = u[i+1,:] - u[i,:]
J += np.matmul(np.matmul(delta_u.T, R), delta_u)
return J
# MPC控制器
def mpc_controller(x, x_ref):
u0 = np.zeros((N, 2))
res = minimize(cost, u0, args=(x, x_ref), bounds=[(u_min, u_max)]*N, constraints=[{'type': 'ineq', 'fun': lambda u: delta_u_min - np.abs(u[1:] - u[:-1])}, {'type': 'ineq', 'fun': lambda u: np.abs(u[1:] - u[:-1]) - delta_u_max}])
u = res.x.reshape((-1, 2))
return u[0,:]
# 主程序
t = 0.0
while t < 100.0:
# 状态量测量
x_meas = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) # TODO: 替换为实际测量值
# MPC控制器
u = mpc_controller(x_meas, x_ref)
# 系统演化
x = solve_ivp(dynamics, [t, t+dt], x, args=(u,), rtol=1e-6, atol=1e-6).y[:,-1]
# 更新参考轨迹
x_ref = np.array([t, 0.0, 0.0, 1.0])
# 更新时间戳
t += dt
```
需要注意的是,这只是一个简单的示例代码,实际应用中需要考虑更多的因素,例如传感器噪声、控制器抖动等等。此外,还可以通过增加状态量、优化控制器参数等方式进一步提高轨迹跟踪性能。
阅读全文