请写一段使用Parzen窗函数法对训练样本估计概率密度的matlab代码
时间: 2024-05-11 09:14:48 浏览: 76
以下是使用Parzen窗函数法对训练样本估计概率密度的示例代码:
```matlab
% 训练样本
train_samples = [1 2 3 4 5 6 7 8 9 10];
% 定义窗函数的宽度(带宽)
h = 1;
% 定义窗函数,这里使用高斯窗函数
gaussian = @(x) exp(-0.5*x.^2) / sqrt(2*pi);
% 对每个点进行估计
x = 0:0.1:11;
p = zeros(size(x));
for i = 1:numel(x)
% 计算窗函数中心点对应的概率密度
p_i = gaussian((x(i) - train_samples) / h);
% 对所有窗函数的贡献求和
p(i) = sum(p_i) / (numel(train_samples) * h);
end
% 绘制结果
plot(x, p);
xlabel('x');
ylabel('p(x)');
title('Parzen窗函数法估计概率密度');
```
该代码中,我们使用高斯窗函数作为窗函数,计算每个点对应的概率密度,并将所有窗函数的贡献求和,得到最终的概率密度估计。最后,我们将结果绘制出来,以便直观地观察估计结果。
相关问题
请写一段使用Parzen窗函数法对训练样本估计概率密度的matlab代码,并带入测试样本进行测试、
以下是使用Parzen窗函数法对训练样本估计概率密度的matlab代码:
```matlab
% 训练样本
train_data = [1.1, 2.2, 3.3, 4.4, 5.5];
train_labels = [1, 1, 0, 0, 0];
% 测试样本
test_data = [2.0, 3.5];
% 参数设置
h = 1; % 窗口大小
% 计算训练样本的概率密度
p1 = 0;
p0 = 0;
for i = 1:length(train_data)
xi = train_data(i);
yi = train_labels(i);
if yi == 1
p1 = p1 + 1/(sqrt(2*pi)*h) * exp(-(test_data - xi)^2/(2*h^2));
else
p0 = p0 + 1/(sqrt(2*pi)*h) * exp(-(test_data - xi)^2/(2*h^2));
end
end
% 输出结果
if p1 > p0
disp('属于类别1');
else
disp('属于类别0');
end
```
上述代码首先定义了训练样本和测试样本,然后设置了窗口大小`h`。接着使用循环遍历训练样本,计算每个样本对测试样本的贡献,并根据样本所属的类别累计概率密度。最后判断测试样本属于哪个类别,并输出结果。
FAMALE.TXT和MALE.TXT两个文件合并成一个,根据身高作为特征,使用Parzen窗法估计概率密度函数,并将结果图像表示,用matlab代码呈现
以下是使用MATLAB进行数据合并和Parzen窗法估计概率密度函数的示例代码:
```matlab
% 读取FEMALE.TXT和MALE.TXT文件中的数据
femaleData = load('FEMALE.TXT');
maleData = load('MALE.TXT');
% 合并两个数据集
data = [femaleData; maleData];
% 提取身高作为特征
height = data(:, 1);
% 设置Parzen窗的带宽参数
bandwidth = 0.1;
% 生成一组用于估计概率密度函数的采样点
x = min(height):0.01:max(height);
% 使用Parzen窗法估计概率密度函数
pdf = zeros(size(x));
for i = 1:length(x)
% 计算每个采样点的核密度估计值
kernel = exp(-0.5 * ((height - x(i)) / bandwidth).^2) / (sqrt(2 * pi) * bandwidth);
% 对所有数据点的核密度估计值求和
pdf(i) = sum(kernel) / length(height);
end
% 绘制概率密度函数图像
plot(x, pdf);
xlabel('Height');
ylabel('Density');
title('Probability Density Function');
```
请确保将文件路径和文件格式正确设置,并根据需要进行其他必要的数据处理或调整。这段代码使用Parzen窗法估计身高的概率密度函数,并绘制了结果图像。带宽参数决定了Parzen窗的宽度,可以根据具体情况进行调整。
请注意,此示例假设FEMALE.TXT和MALE.TXT文件中的数据已经以适当的格式保存,每行表示一个数据样本,包含身高和其他特征。代码中使用了MATLAB的向量化操作来计算核密度估计值并绘制概率密度函数图像。
希望这能帮到您!如有任何疑问,请随时提问。
阅读全文