python 变分自编码器降维
时间: 2023-11-01 15:56:56 浏览: 92
变分自编码器(Variational Autoencoder,VAE)是一种无监督学习的模型,可以用于数据压缩和降维。相比于其他自编码器,VAE 可以生成新的样本,并且可以控制生成样本的特征。
下面是使用 VAE 进行降维的 Python 代码示例:
```python
import tensorflow as tf
from tensorflow.keras import layers
# 定义编码器
encoder_inputs = tf.keras.Input(shape=(28, 28, 1))
x = layers.Conv2D(32, 3, activation="relu", strides=2, padding="same")(encoder_inputs)
x = layers.Conv2D(64, 3, activation="relu", strides=2, padding="same")(x)
x = layers.Flatten()(x)
x = layers.Dense(16, activation="relu")(x)
z_mean = layers.Dense(2, name="z_mean")(x)
z_log_var = layers.Dense(2, name="z_log_var")(x)
# 定义采样函数
def sampling(args):
z_mean, z_log_var = args
epsilon = tf.keras.backend.random_normal(shape=tf.shape(z_mean))
return z_mean + tf.exp(0.5 * z_log_var) * epsilon
# 定义解码器
latent_inputs = tf.keras.Input(shape=(2,))
x = layers.Dense(7*7*64, activation="relu")(latent_inputs)
x = layers.Reshape((7, 7, 64))(x)
x = layers.Conv2DTranspose(64, 3, activation="relu", strides=2, padding="same")(x)
x = layers.Conv2DTranspose(32, 3, activation="relu", strides=2, padding="same")(x)
decoder_outputs = layers.Conv2DTranspose(1, 3, activation="sigmoid", padding="same")(x)
# 定义 VAE 模型
vae = tf.keras.Model(encoder_inputs, decoder_outputs)
# 定义重构损失
reconstruction_loss = tf.keras.losses.binary_crossentropy(encoder_inputs, decoder_outputs)
# 定义 KL 散度损失
kl_loss = -0.5 * tf.reduce_mean(z_log_var - tf.square(z_mean) - tf.exp(z_log_var) + 1)
# 定义总损失
vae_loss = reconstruction_loss + kl_loss
# 编译模型
vae.add_loss(vae_loss)
vae.compile(optimizer="adam")
# 加载数据集
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
x_train = x_train.astype("float32") / 255.
x_train = x_train.reshape(x_train.shape + (1,))
x_test = x_test.astype("float32") / 255.
x_test = x_test.reshape(x_test.shape + (1,))
# 训练模型
vae.fit(x_train, epochs=10, batch_size=128, validation_data=(x_test, None))
# 生成编码器模型
encoder = tf.keras.Model(encoder_inputs, z_mean)
# 生成解码器模型
decoder_inputs = tf.keras.Input(shape=(2,))
decoder_x = layers.Dense(7*7*64, activation="relu")(decoder_inputs)
decoder_x = layers.Reshape((7, 7, 64))(decoder_x)
decoder_x = layers.Conv2DTranspose(64, 3, activation="relu", strides=2, padding="same")(decoder_x)
decoder_x = layers.Conv2DTranspose(32, 3, activation="relu", strides=2, padding="same")(decoder_x)
decoder_outputs = layers.Conv2DTranspose(1, 3, activation="sigmoid", padding="same")(decoder_x)
decoder = tf.keras.Model(decoder_inputs, decoder_outputs)
# 生成降维后的数据
z = encoder.predict(x_test)
reduced_data = decoder.predict(z)
```
以上代码使用 VAE 对 MNIST 数据集进行降维,并生成新的样本。在训练完成后,可以使用编码器模型对数据进行降维,得到降维后的数据。
阅读全文