import os import cv2 import sys import math import random import imageio import numpy as np from scipy import misc, ndimage import matplotlib.pyplot as plt img_path = sys.argv[1] img = cv2.imread(img_path) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) edges = cv2.Canny(gray, 50, 150, apertureSize=3) # 霍夫变换 lines = cv2.HoughLines(edges, 1, np.pi / 180, 0) rotate_angle = 0 for rho, theta in lines[0]: a = np.cos(theta) b = np.sin(theta) x0 = a * rho y0 = b * rho x1 = int(x0 + 1000 * (-b)) y1 = int(y0 + 1000 * (a)) x2 = int(x0 - 1000 * (-b)) y2 = int(y0 - 1000 * (a)) if x1 == x2 or y1 == y2: continue t = float(y2 - y1) / (x2 - x1) rotate_angle = math.degrees(math.atan(t)) if rotate_angle > 45: rotate_angle = -90 + rotate_angle elif rotate_angle < -45: rotate_angle = 90 + rotate_angle print("rotate_angle : "+str(rotate_angle)) rotate_img = ndimage.rotate(img, rotate_angle) imageio.imsave('ssss.png',rotate_img) cv2.imshow("img", rotate_img) cv2.waitKey(0)
时间: 2023-06-04 10:05:40 浏览: 319
这是一些Python代码,主要功能是读取一张图片并进行边缘检测,需要调用opencv、scipy、numpy等库。首先通过sys.argv获取图片路径,然后读取并转换成灰度图,接着使用Canny方法检测边缘并返回结果。
相关问题
import os import matplotlib.pyplot as plt plt.show() import numpy as np import torch from torch import nn import torch.optim as optim import torchvision from torchvision import transforms,models,datasets import imageio import time import warnings import random import sys import copy import json from PIL import Image
您好!这段代码是在导入一些常用的Python库和模块。下面是每个导入语句的作用:
- `import os`:用于与操作系统进行交互,如文件路径操作等。
- `import matplotlib.pyplot as plt`:用于绘制数据可视化图形。
- `plt.show()`:显示matplotlib绘制的图形。
- `import numpy as np`:导入用于数值计算的库。
- `import torch`:导入PyTorch深度学习框架。
- `from torch import nn`:从torch模块中导入神经网络模块。
- `import torch.optim as optim`:导入用于优化器的PyTorch模块。
- `import torchvision`:导入PyTorch的计算机视觉库。
- `from torchvision import transforms, models, datasets`:从torchvision库中导入数据转换、预训练模型和数据集等模块。
- `import imageio`:导入用于图像处理和IO操作的库。
- `import time`:导入用于时间相关操作的库。
- `import warnings`:导入用于处理警告信息的库。
- `import random`:导入用于生成随机数的库。
- `import sys`:导入用于与Python解释器进行交互的库。
- `import copy`:导入用于复制对象的库。
- `import json`:导入用于处理JSON数据的库。
- `from PIL import Image`:从PIL库中导入Image模块,用于图像处理。
如果您有具体的问题或需要进一步的解释,请告诉我。
import numpy as np import tensorflow as tf from tensorflow.keras import layers, models import imageio解释
这段代码是在Python中导入一些常用的机器学习和深度学习库,包括numpy、tensorflow和tensorflow.keras。其中,numpy是一个用于科学计算的Python库,提供了大量的数学函数和矩阵运算工具;tensorflow是一个由Google开发的开源深度学习框架,提供了丰富的API和工具,用于搭建、训练和测试神经网络模型;tensorflow.keras是tensorflow的高级API,提供了简单易用的接口和函数,方便用户快速构建深度学习模型。
在代码中,我们还导入了layers和models模块,这些模块包含了各种用于搭建深度学习模型的层和模块。最后,我们还导入了imageio库,这是一个用于读取和处理图像数据的Python库。
阅读全文
相关推荐















