import os import cv2 import sys import math import random import imageio import numpy as np from scipy import misc, ndimage import matplotlib.pyplot as plt img_path = sys.argv[1] img = cv2.imread(img_path) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) edges = cv2.Canny(gray, 50, 150, apertureSize=3) # 霍夫变换 lines = cv2.HoughLines(edges, 1, np.pi / 180, 0) rotate_angle = 0 for rho, theta in lines[0]: a = np.cos(theta) b = np.sin(theta) x0 = a * rho y0 = b * rho x1 = int(x0 + 1000 * (-b)) y1 = int(y0 + 1000 * (a)) x2 = int(x0 - 1000 * (-b)) y2 = int(y0 - 1000 * (a)) if x1 == x2 or y1 == y2: continue t = float(y2 - y1) / (x2 - x1) rotate_angle = math.degrees(math.atan(t)) if rotate_angle > 45: rotate_angle = -90 + rotate_angle elif rotate_angle < -45: rotate_angle = 90 + rotate_angle print("rotate_angle : "+str(rotate_angle)) rotate_img = ndimage.rotate(img, rotate_angle) imageio.imsave('ssss.png',rotate_img) cv2.imshow("img", rotate_img) cv2.waitKey(0)

时间: 2023-06-04 13:05:40 浏览: 296
这是一些Python代码,主要功能是读取一张图片并进行边缘检测,需要调用opencv、scipy、numpy等库。首先通过sys.argv获取图片路径,然后读取并转换成灰度图,接着使用Canny方法检测边缘并返回结果。
相关问题

import os import matplotlib.pyplot as plt plt.show() import numpy as np import torch from torch import nn import torch.optim as optim import torchvision from torchvision import transforms,models,datasets import imageio import time import warnings import random import sys import copy import json from PIL import Image

您好!这段代码是在导入一些常用的Python库和模块。下面是每个导入语句的作用: - `import os`:用于与操作系统进行交互,如文件路径操作等。 - `import matplotlib.pyplot as plt`:用于绘制数据可视化图形。 - `plt.show()`:显示matplotlib绘制的图形。 - `import numpy as np`:导入用于数值计算的库。 - `import torch`:导入PyTorch深度学习框架。 - `from torch import nn`:从torch模块中导入神经网络模块。 - `import torch.optim as optim`:导入用于优化器的PyTorch模块。 - `import torchvision`:导入PyTorch的计算机视觉库。 - `from torchvision import transforms, models, datasets`:从torchvision库中导入数据转换、预训练模型和数据集等模块。 - `import imageio`:导入用于图像处理和IO操作的库。 - `import time`:导入用于时间相关操作的库。 - `import warnings`:导入用于处理警告信息的库。 - `import random`:导入用于生成随机数的库。 - `import sys`:导入用于与Python解释器进行交互的库。 - `import copy`:导入用于复制对象的库。 - `import json`:导入用于处理JSON数据的库。 - `from PIL import Image`:从PIL库中导入Image模块,用于图像处理。 如果您有具体的问题或需要进一步的解释,请告诉我。

我要做pytorch深度学习算法,还需要用paddle库,还需要用numpy pandas import imageio as iio from PIL import Image import oss2 from oss2 import SizedFileAdapter, determine_part_size from oss2.models import PartInfo from itertools import islice import crcmod._crcfunext import numpy as np from sqlalchemy import create_engine import pymysql import pandas as pd import json from collections import Counter import math import random import datetime import paddlex as pdx import os os.environ['CUDA_VISIBLE_DEVICES'] = '1' import cv2 from oss_video_03_test import * import time import yaml import glob import json from pathlib import Path from functools import reduce import pandas as pd import cv2 import numpy as np import pandas as pd from predict_shu import * import math import paddle from paddle.inference import Config from paddle.inference import create_predictor import sys 我的python是3.7 请为 定制如何安装

您可以使用以下步骤来安装 PyTorch, PaddlePaddle, numpy, pandas, imageio, PIL, oss2, sqlalchemy, pymysql, cv2, 和 paddle: 1. 安装 PyTorch: ``` pip install torch torchvision torchaudio ``` 2. 安装 PaddlePaddle: ``` pip install paddlepaddle ``` 3. 安装 numpy: ``` pip install numpy ``` 4. 安装 pandas: ``` pip install pandas ``` 5. 安装 imageio: ``` pip install imageio ``` 6. 安装 PIL: ``` pip install Pillow ``` 7. 安装 oss2: ``` pip install oss2 ``` 8. 安装 sqlalchemy: ``` pip install sqlalchemy ``` 9. 安装 pymysql: ``` pip install pymysql ``` 10. 安装 cv2: ``` pip install opencv-python ``` 11. 安装 paddle: ``` pip install paddlepaddle ``` 上述步骤中的所有库都可以使用 pip 直接安装,如果您在安装过程中遇到问题,可以参考各个库的官方文档或者在 Stack Overflow 上寻求帮助。
阅读全文

相关推荐

import numpy as np import numpy.fft as fft import scipy.ndimage as nd import imageio import scipy.misc as misc from math import pi #Read in source image #source = nd.imread("einstein.bmp", flatten=True) source = imageio.imread("einstein.bmp", as_gray=True) #Pad image to simulate oversampling pad_len = len(source) padded = np.pad(source, ((pad_len, pad_len),(pad_len, pad_len)), 'constant', constant_values=((0,0),(0,0))) ft = fft.fft2(padded) #simulate diffraction pattern diffract = np.abs(ft) l = len(padded) #keep track of where the image is vs the padding mask = np.ones((pad_len+2,pad_len+2)) mask = np.pad(mask, ((pad_len-1, pad_len-1),(pad_len-1, pad_len-1)), 'constant', constant_values=((0,0),(0,0))) #Initial guess using random phase info guess = diffract * np.exp(1j * np.random.rand(l,l) * 2 * pi) #number of iterations r = 801 #step size parameter beta = 0.8 #previous result prev = None for s in range(0,r): #apply fourier domain constraints update = diffract * np.exp(1j * np.angle(guess)) inv = fft.ifft2(update) inv = np.real(inv) if prev is None: prev = inv #apply real-space constraints temp = inv for i in range(0,l): for j in range(0,l): #image region must be positive if inv[i,j] < 0 and mask[i,j] == 1: inv[i,j] = prev[i,j] - beta*inv[i,j] #push support region intensity toward zero if mask[i,j] == 0: inv[i,j] = prev[i,j] - beta*inv[i,j] prev = temp guess = fft.fft2(inv) #save an image of the progress if s % 10 == 0: #imageio.imsave("/Users/chasegoddard/Stuff/CDI/code/save/progress" + str(s) + # ".bmp", prev) imageio.imsave("C:/Users/Administrator/Desktop/仿真结果/结果" + str(s) + ".bmp", prev) print(s)

import pandas as pd import numpy as np import matplotlib.pyplot as plt import jieba import requests import re from io import BytesIO import imageio # 设置城市和时间 city = '上海' year = 2021 quarter = 2 # 爬取数据 url = f'http://tianqi.2345.com/t/wea_history/js/{city}/{year}/{quarter}.js' response = requests.get(url) text = response.content.decode('gbk') # 正则表达式匹配 pattern = re.compile(r'(\d{4}-\d{2}-\d{2})\|(\d{1,2})\|(\d{1,2})\|(\d{1,3})\|(\d{1,3})\|(\D+)\n') result = pattern.findall(text) # 数据整理 data = pd.DataFrame(result, columns=['日期', '最高温度', '最低温度', '空气质量指数', '风力等级', '天气']) data[['最高温度', '最低温度', '空气质量指数', '风力等级']] = data[['最高温度', '最低温度', '空气质量指数', '风力等级']].astype(int) data['日期'] = pd.to_datetime(data['日期']) # 可视化分析 # 统计天气情况 weather_count = data['天气'].value_counts() weather_count = weather_count[:10] # 分词统计 seg_list = jieba.cut(' '.join(data['天气'].tolist())) words = {} for word in seg_list: if len(word) < 2: continue if word in words: words[word] += 1 else: words[word] = 1 # 绘制柱状图和词云图 plt.figure(figsize=(10, 5)) plt.bar(weather_count.index, weather_count.values) plt.title(f'{city}{year}年第{quarter}季度天气情况') plt.xlabel('天气') plt.ylabel('次数') plt.savefig('weather_bar.png') wordcloud = pd.DataFrame(list(words.items()), columns=['word', 'count']) mask_image = imageio.imread('cloud_mask.png') wordcloud.plot(kind='scatter', x='count', y='count', alpha=0.5, s=300, cmap='Reds', figsize=(10, 5)) for i in range(len(wordcloud)): plt.text(wordcloud.iloc[i]['count'], wordcloud.iloc[i]['count'], wordcloud.iloc[i]['word'], ha='center', va='center', fontproperties='SimHei') plt.axis('off') plt.imshow(mask_image, cmap=plt.cm.gray, interpolation='bilinear') plt.savefig('weather_wordcloud.png')这个python代码有错误,请改正以使该代码运行成功

from sklearn import model_selection from sklearn import neural_network from sklearn import datasets from sklearn.model_selection import train_test_split import cv2 from fractions import Fraction import numpy import scipy from sklearn.neural_network import MLPClassifier from sklearn.neural_network import MLPRegressor from sklearn import preprocessing import imageio reg = MLPRegressor(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(5, 2), random_state=1) def image_to_data(image): im_resized = scipy.misc.imresize(image, (8, 8)) im_gray = cv2.cvtColor(imresized, cv2.COLOR_BGR2GRAY) im_hex = Fraction(16,255) * im_gray im_reverse = 16 - im_hex return imreverse.astype(numpy.int) def data_split(Data): x_train, x_test, y_train, y_test = train_test_split(Data.data, Data.target) return x_train, x_test, y_train, y_test def data_train(x_train, x_test, y_train, y_test): clf = neural_network.MLPClassifier() clf.fit(x_train, y_train) return clf def image_predict(image_path, clf): image = scipy.misc.imread(image_path) image_data = image_to_data(image) image_data_reshaped = image_data.reshape(1, 64) predict_result = clf.predict(image_data_reshaped) print("手写体数字识别结果为:",predict_result,'\n') if __name__=='__main__': print("若要退出,请按q退出!"'\n') str_get = input("请输入识别的手写数字序号:" +'\n') while str_get != 'q': print("识别第{}个手写数字:".format(str_get)+'\n') image_path = r"C: // Users // 33212 // Desktop // "+str_get+".png" Data = datasets.load_digits() x_train, x_test, y_train, y_test = data_split(Data) clf = data_train(x_train, x_test, y_train, y_test) image_predict(image_path, clf) str_get = input("请输入识别的手写数字序号:" +'\n')

解释这段代码import jittor as jt import jrender as jr jt.flags.use_cuda = 1 import os import tqdm import numpy as np import imageio import argparse current_dir = os.path.dirname(os.path.realpath(__file__)) data_dir = os.path.join(current_dir, 'data') def main(): parser = argparse.ArgumentParser() parser.add_argument('-i', '--filename-input', type=str, default=os.path.join(data_dir, 'obj/spot/spot_triangulated.obj')) parser.add_argument('-o', '--output-dir', type=str, default=os.path.join(data_dir, 'results/output_render')) args = parser.parse_args() # other settings camera_distance = 2.732 elevation = 30 azimuth = 0 # load from Wavefront .obj file mesh = jr.Mesh.from_obj(args.filename_input, load_texture=True, texture_res=5, texture_type='surface', dr_type='softras') # create renderer with SoftRas renderer = jr.Renderer(dr_type='softras') os.makedirs(args.output_dir, exist_ok=True) # draw object from different view loop = tqdm.tqdm(list(range(0, 360, 4))) writer = imageio.get_writer(os.path.join(args.output_dir, 'rotation.gif'), mode='I') imgs = [] from PIL import Image for num, azimuth in enumerate(loop): # rest mesh to initial state mesh.reset_() loop.set_description('Drawing rotation') renderer.transform.set_eyes_from_angles(camera_distance, elevation, azimuth) rgb = renderer.render_mesh(mesh, mode='rgb') image = rgb.numpy()[0].transpose((1, 2, 0)) writer.append_data((255*image).astype(np.uint8)) writer.close() # draw object from different sigma and gamma loop = tqdm.tqdm(list(np.arange(-4, -2, 0.2))) renderer.transform.set_eyes_from_angles(camera_distance, elevation, 45) writer = imageio.get_writer(os.path.join(args.output_dir, 'bluring.gif'), mode='I') for num, gamma_pow in enumerate(loop): # rest mesh to initial state mesh.reset_() renderer.set_gamma(10**gamma_pow) renderer.set_sigma(10**(gamma_pow - 1)) loop.set_description('Drawing blurring') images = renderer.render_mesh(mesh, mode='rgb') image = images.numpy()[0].transpose((1, 2, 0)) # [image_size, image_size, RGB] writer.append_data((255*image).astype(np.uint8)) writer.close() # save to textured obj mesh.reset_() mesh.save_obj(os.path.join(args.output_dir, 'saved_spot.obj')) if __name__ == '__main__': main()

import jittor as jt import jrender as jr jt.flags.use_cuda = 1 # 开启GPU加速 import os import tqdm import numpy as np import imageio import argparse # 获取当前文件所在目录路径和数据目录路径 current_dir = os.path.dirname(os.path.realpath(__file__)) data_dir = os.path.join(current_dir, 'data') def main(): # 创建命令行参数解析器 parser = argparse.ArgumentParser() parser.add_argument('-i', '--filename-input', type=str, default=os.path.join(data_dir, 'obj/spot/spot_triangulated.obj')) parser.add_argument('-o', '--output-dir', type=str, default=os.path.join(data_dir, 'results/output_render')) args = parser.parse_args() # other settings camera_distance = 2.732 elevation = 30 azimuth = 0 # load from Wavefront .obj file mesh = jr.Mesh.from_obj(args.filename_input, load_texture=True, texture_res=5, texture_type='surface', dr_type='softras') # create renderer with SoftRas renderer = jr.Renderer(dr_type='softras') os.makedirs(args.output_dir, exist_ok=True) # draw object from different view loop = tqdm.tqdm(list(range(0, 360, 4))) writer = imageio.get_writer(os.path.join(args.output_dir, 'rotation.gif'), mode='I') imgs = [] from PIL import Image for num, azimuth in enumerate(loop): # rest mesh to initial state mesh.reset_() loop.set_description('Drawing rotation') renderer.transform.set_eyes_from_angles(camera_distance, elevation, azimuth) rgb = renderer.render_mesh(mesh, mode='rgb') image = rgb.numpy()[0].transpose((1, 2, 0)) writer.append_data((255*image).astype(np.uint8)) writer.close() # draw object from different sigma and gamma loop = tqdm.tqdm(list(np.arange(-4, -2, 0.2))) renderer.transform.set_eyes_from_angles(camera_distance, elevation, 45) writer = imageio.get_writer(os.path.join(args.output_dir, 'bluring.gif'), mode='I') for num, gamma_pow in enumerate(loop): # rest mesh to initial state mesh.reset_() renderer.set_gamma(10**gamma_pow) renderer.set_sigma(10**(gamma_pow - 1)) loop.set_description('Drawing blurring') images = renderer.render_mesh(mesh, mode='rgb') image = images.numpy()[0].transpose((1, 2, 0)) # [image_size, image_size, RGB] writer.append_data((255*image).astype(np.uint8)) writer.close() # save to textured obj mesh.reset_() mesh.save_obj(os.path.join(args.output_dir, 'saved_spot.obj')) if __name__ == '__main__': main()在每行代码后添加注释

解释这段代码import jittor as jt from jittor import nn jt.flags.use_cuda = 1 import os import tqdm import numpy as np import imageio import argparse import jrender as jr from jrender import neg_iou_loss, LaplacianLoss, FlattenLoss current_dir = os.path.dirname(os.path.realpath(file)) data_dir = os.path.join(current_dir, 'data') class Model(nn.Module): def init(self, template_path): super(Model, self).init() # set template mesh self.template_mesh = jr.Mesh.from_obj(template_path, dr_type='n3mr') self.vertices = (self.template_mesh.vertices * 0.5).stop_grad() self.faces = self.template_mesh.faces.stop_grad() self.textures = self.template_mesh.textures.stop_grad() # optimize for displacement map and center self.displace = jt.zeros(self.template_mesh.vertices.shape) self.center = jt.zeros((1, 1, 3)) # define Laplacian and flatten geometry constraints self.laplacian_loss = LaplacianLoss(self.vertices[0], self.faces[0]) self.flatten_loss = FlattenLoss(self.faces[0]) def execute(self, batch_size): base = jt.log(self.vertices.abs() / (1 - self.vertices.abs())) centroid = jt.tanh(self.center) vertices = (base + self.displace).sigmoid() * nn.sign(self.vertices) vertices = nn.relu(vertices) * (1 - centroid) - nn.relu(-vertices) * (centroid + 1) vertices = vertices + centroid # apply Laplacian and flatten geometry constraints laplacian_loss = self.laplacian_loss(vertices).mean() flatten_loss = self.flatten_loss(vertices).mean() return jr.Mesh(vertices.repeat(batch_size, 1, 1), self.faces.repeat(batch_size, 1, 1), dr_type='n3mr'), laplacian_loss, flatten_loss

大家在看

recommend-type

基于CDMA-TDOA的室内超声波定位系统 (2012年)

针对国内外对室内定位技术中定位精度不高问题,提出一种基于CDMA( Code Division Multiple Access) - TDOA( Time Difference of Arrival)的室内超声波定位系统,并给出实时性差异等缺点,进行了其工作原理和超声波信号的分析。该系统基于射频和超声波传感器的固有性质,对超声波信号采用CDMA技术进行编码,以便在目标节点上能区分各个信标发来的超声波信号,并结合射频信号实现TDOA测距算法,最终实现三维定位。采用Matlab/Simulink模块对3个信标
recommend-type

如何降低开关电源纹波噪声

1、什么是纹波? 2、纹波的表示方法 3、纹波的测试 4、纹波噪声的抑制方法
recommend-type

西安石油大学2019-2023 计算机考研808数据结构真题卷

西安石油大学2019-2023 计算机考研808数据结构真题卷,希望能够帮助到大家
recommend-type

AWS(亚马逊)云解决方案架构师面试三面作业全英文作业PPT

笔者参加亚马逊面试三面的作业,希望大家参考,少走弯路。
recommend-type

python大作业基于python实现的心电检测源码+数据+详细注释.zip

python大作业基于python实现的心电检测源码+数据+详细注释.zip 【1】项目代码完整且功能都验证ok,确保稳定可靠运行后才上传。欢迎下载使用!在使用过程中,如有问题或建议,请及时私信沟通,帮助解答。 【2】项目主要针对各个计算机相关专业,包括计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网等领域的在校学生、专业教师或企业员工使用。 【3】项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 【4】如果基础还行,或热爱钻研,可基于此项目进行二次开发,DIY其他不同功能,欢迎交流学习。 【备注】 项目下载解压后,项目名字和项目路径不要用中文,否则可能会出现解析不了的错误,建议解压重命名为英文名字后再运行!有问题私信沟通,祝顺利! python大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zip python大作业基于python实现的心电检测源码+数据+详细注释.zip

最新推荐

recommend-type

解决python中显示图片的plt.imshow plt.show()内存泄漏问题

import matplotlib.pyplot as plt for image in images: plt.imshow(image) plt.show() ``` 此外,补充知识部分介绍了如何从base64编码的字符串中读取并显示图片。`base64_to_rgb()`函数实现了这个功能,首先...
recommend-type

基于C语言课程设计学生成绩管理系统、详细文档+全部资料+高分项目.zip

【资源说明】 基于C语言课程设计学生成绩管理系统、详细文档+全部资料+高分项目.zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

传感器集成全攻略:ICM-42688-P运动设备应用详解

![传感器集成全攻略:ICM-42688-P运动设备应用详解](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-ba33fcfbde1d1207d7b8fe45b6ea58d0.png) # 摘要 ICM-42688-P传感器作为一种先进的惯性测量单元,广泛应用于多种运动设备中。本文首先介绍了ICM-42688-P传感器的基本概述和技术规格,然后深入探讨了其编程基础,包括软件接口、数据读取处理及校准测试。接着,本文详细分析了该传感器在嵌入式系统、运动控制和人机交互设备中的实践应用,并且探讨了高级功能开发,
recommend-type

matlab 中实现 astar

在MATLAB中,A*算法是一种用于求解最短路径问题的启发式搜索算法。它适用于带权重的图或网格,特别是当有大量潜在解决方案时,比如迷宫寻路问题。以下是使用MATLAB基本步骤来实现A*算法: 1. **数据结构准备**: - 创建一个二维数组表示地图,其中0代表可以通行的节点,其他值代表障碍物或边界。 - 定义一个队列(通常使用`prioritiesqueue`)来存储待探索的节点及其信息。 2. **初始化**: - 设定起始节点(start),目标节点(goal),以及每个节点的初始g值(从起点到该点的实际代价)和f值(g值加上估计的h值,即启发函数)。 3.