output = Bidirectional(GRU(64, return_sequences=True))(output) output = Bidirectional(GRU(64, return_sequences=True))(output) time_last = tf.transpose(output, [0, 2, 1]) att_1 = Dense(time_step, activation='tanh')(time_last) att_2 = Dense(time_step, activation='softmax', use_bias=False)(att_1) time_att = Multiply()([time_last, att_2]) out = tf.reduce_sum(time_att, axis=-1)是什么意思
时间: 2024-04-20 09:27:02 浏览: 138
这段代码是使用双向GRU网络来进行序列建模,并使用注意力机制来对输入序列中的不同位置进行加权,最终输出加权后的结果。
具体来说,第一行代码使用了一个双向GRU层,并将其输出作为下一层的输入。这里的64是GRU层的输出维度,return_sequences=True表示输出一个序列而不是一个单独的向量。
第二行代码同样使用了一个双向GRU层,并将其输出作为下一层的输入。这里也是输出一个序列。
第三行代码将输出转置,使得时间步长(即序列长度)成为第二个维度。
第四行代码使用一个全连接层(Dense)来对转置后的输出进行变换,将其映射到一个维度为time_step的向量上,并使用tanh作为激活函数。
第五行代码再次使用一个全连接层,将上一步的输出映射为一个与输入序列长度相同的向量,并使用softmax作为激活函数,使得输出向量中的元素之和为1,得到一个权重向量。
第六行代码使用Multiply层将权重向量与转置后的输出相乘,实现对不同时间步的加权。
第七行代码使用reduce_sum函数将加权后的结果在时间步长维度上求和,最终得到一个维度为64的向量(如果第一行代码中输出维度改变,则此处的维度也会相应改变)作为模型的最终输出。
相关问题
def build_lstm_generator(seq_len,hidden_size,vocab_size,compiler=True): x_inp = Input((seq_len,vocab_size)) x = Dense(hidden_size)(x_inp) #x = InstanceNormalization()(x) for _ in range(8): x = Dense(hidden_size,activation="gelu")(x) #x = Dropout(0.1)(x) x = Bidirectional(GRU(hidden_size // 2,return_sequences=True))(x) x = Bidirectional(GRU(hidden_size // 2,return_sequences=True))(x) #x = InstanceNormalization()(x) x = GRU(hidden_size)(x) o = Dense(vocab_size,activation="linear")(x) model = Model(inputs=x_inp,outputs=o,name="generator") if compiler: adam = LAMB(learning_rate = 1*1e-4) #model.compile(optimizer=adam,loss=loss_function) model.summary() return model
这是一个用于构建 LSTM 生成模型的函数。它的输入参数包括 `seq_len`(序列长度)、`hidden_size`(隐藏层的大小)、`vocab_size`(词汇表大小)和 `compiler`(是否编译模型)。
具体来说,这个函数定义了一个包含多个双向 GRU 层的 LSTM 生成模型,其中每个 GRU 层的输出都会传递给下一个 GRU 层进行处理。在 GRU 层之间,还添加了多个全连接层和激活函数,用于增加模型的非线性特征。最后,模型的输出通过一个全连接层进行线性变换,得到生成序列的概率分布。
这个函数中用到了 `tensorflow` 和 `tensorflow_addons` 库中的一些函数和类,如 `Input`、`Dense`、`Bidirectional`、`GRU`、`LAMB` 等。其中,`LAMB` 是一种基于梯度的优化器,在这里用于优化模型的参数。
如果 `compiler` 参数为 True,那么模型会被编译并设置优化器和损失函数;否则,模型只会被定义但不会被编译。
最后,函数返回构建好的 LSTM 生成模型。
def build_lstm_discriminator(seq_len,hidden_size,vocab_size): x_inp = Input((seq_len,vocab_size)) x = Dense(hidden_size)(x_inp) for _ in range(4): x = Dense(hidden_size,activation="gelu")(x) x = Bidirectional(GRU(hidden_size // 2,return_sequences=True))(x) x = LayerNormalization(epsilon=1e-7)(x) x = Bidirectional(GRU(hidden_size))(x) o = Dense(1,activation="linear")(x) model = Model(inputs=x_inp,outputs=o) adam = Adam(learning_rate = 1e-3) model.compile(optimizer=adam) return model
这是一个用于构建 LSTM 判别器模型的函数。它的输入参数包括 `seq_len`(序列长度)、`hidden_size`(隐藏层的大小)和 `vocab_size`(词汇表大小)。
具体来说,这个函数定义了一个包含多个双向 GRU 层的 LSTM 判别器模型,其中每个 GRU 层的输出都会传递给下一个 GRU 层进行处理。在 GRU 层之间,还添加了多个全连接层和激活函数,用于增加模型的非线性特征。最后,模型的输出通过一个全连接层进行线性变换,得到对输入序列的判别结果。
这个函数中用到了 `tensorflow` 和 `tensorflow_addons` 库中的一些函数和类,如 `Input`、`Dense`、`Bidirectional`、`GRU`、`LayerNormalization` 等。
模型的优化器使用的是 Adam 优化器,学习率为 1e-3。在最后,模型被编译并返回。
最后,函数返回构建好的 LSTM 判别器模型。
阅读全文