举一个例子,python,训练LDA主题模型,评价不同主题数的模型的困惑度来选择最优的那个模型
时间: 2023-09-20 11:07:04 浏览: 185
好的,下面是一个简单的 Python 代码,用于训练 LDA 主题模型并评估不同主题数的困惑度,选择最优的那个模型:
```python
import gensim
from gensim.models import CoherenceModel
from gensim.corpora import Dictionary
# Load the corpus
corpus = gensim.corpora.MmCorpus('corpus.mm')
# Build the dictionary
dictionary = Dictionary.load('dictionary.dict')
# Define a function to train and evaluate the LDA model
def evaluate_lda_model(num_topics, corpus, dictionary):
# Train the LDA model
lda_model = gensim.models.LdaModel(corpus=corpus, num_topics=num_topics, id2word=dictionary)
# Evaluate the LDA model using the coherence score
coherence_model_lda = CoherenceModel(model=lda_model, texts=texts, dictionary=dictionary, coherence='c_v')
coherence_lda = coherence_model_lda.get_coherence()
# Calculate the perplexity of the LDA model
perplexity_lda = lda_model.log_perplexity(corpus)
return coherence_lda, perplexity_lda
# Define a list of different number of topics to evaluate
num_topics_list = [5, 10, 15, 20, 25, 30]
# Evaluate each LDA model and store the results
coherence_scores = []
perplexity_scores = []
for num_topics in num_topics_list:
coherence_lda, perplexity_lda = evaluate_lda_model(num_topics, corpus, dictionary)
coherence_scores.append(coherence_lda)
perplexity_scores.append(perplexity_lda)
# Find the index of the LDA model with the maximum coherence score
max_index = coherence_scores.index(max(coherence_scores))
# Print the results
print('Optimal number of topics: ', num_topics_list[max_index])
print('Coherence score: ', coherence_scores[max_index])
print('Perplexity score: ', perplexity_scores[max_index])
```
在上面的代码中,我们首先加载了语料库和词典。然后,我们定义了一个 `evaluate_lda_model` 函数,该函数使用给定的主题数训练 LDA 模型,并使用相干性分数评估模型,并计算模型的困惑度。接下来,我们定义了一个主题数列表,对于每个主题数,我们都使用 `evaluate_lda_model` 函数评估一个 LDA 模型,并存储相干性分数和困惑度。最后,我们找到具有最大相干性分数的 LDA 模型,并打印出该模型的主题数、相干性分数和困惑度。
阅读全文