用python语言写DNN神经网络,设计一个基于深度学习的模型,用来基于kernel特征矩阵推测层序列
时间: 2024-03-26 08:35:37 浏览: 64
回归预测-基于深度神经网络DNN的数据回归预测Python程序 多特征输入单输出
好的,以下是一个用Python实现的DNN神经网络,用于基于kernel特征矩阵推测层序列的模型:
```python
import numpy as np
import tensorflow as tf
# 定义输入数据和标签
inputs = tf.placeholder(tf.float32, shape=[None, 55, 9])
labels = tf.placeholder(tf.float32, shape=[None, num_classes])
# 定义网络结构
def dnn(inputs, num_classes):
# 第一层卷积层
conv1 = tf.layers.conv1d(inputs=inputs, filters=32, kernel_size=3, padding='same', activation=tf.nn.relu)
pool1 = tf.layers.max_pooling1d(inputs=conv1, pool_size=2, strides=2)
# 第二层卷积层
conv2 = tf.layers.conv1d(inputs=pool1, filters=64, kernel_size=3, padding='same', activation=tf.nn.relu)
pool2 = tf.layers.max_pooling1d(inputs=conv2, pool_size=2, strides=2)
# 第三层卷积层
conv3 = tf.layers.conv1d(inputs=pool2, filters=128, kernel_size=3, padding='same', activation=tf.nn.relu)
pool3 = tf.layers.max_pooling1d(inputs=conv3, pool_size=2, strides=2)
# 全连接层
flatten = tf.layers.flatten(pool3)
fc1 = tf.layers.dense(inputs=flatten, units=512, activation=tf.nn.relu)
fc2 = tf.layers.dense(inputs=fc1, units=num_classes)
return fc2
# 定义超参和优化器
num_classes = 10
learning_rate = 0.001
batch_size = 64
num_epochs = 10
logits = dnn(inputs, num_classes)
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=labels))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(loss)
# 训练模型
sess = tf.Session()
sess.run(tf.global_variables_initializer())
for epoch in range(num_epochs):
total_loss = 0
for i in range(0, len(train_data), batch_size):
batch_inputs = train_data[i:i+batch_size]
batch_labels = train_labels[i:i+batch_size]
_, batch_loss = sess.run([optimizer, loss], feed_dict={inputs: batch_inputs, labels: batch_labels})
total_loss += batch_loss
print('Epoch %d, loss=%.4f' % (epoch+1, total_loss/len(train_data)))
# 测试模型
correct_preds = tf.equal(tf.argmax(logits, 1), tf.argmax(labels, 1))
accuracy = tf.reduce_mean(tf.cast(correct_preds, tf.float32))
test_accuracy = sess.run(accuracy, feed_dict={inputs: test_data, labels: test_labels})
print('Test accuracy: %.4f' % test_accuracy)
```
在这个模型中,我们首先定义了输入数据和标签,然后通过`dnn()`函数定义了网络结构,包括三个卷积层和两个全连接层。然后我们定义了超参和优化器,使用交叉熵作为损失函数,使用Adam优化器进行优化。最后,我们在训练集上进行训练,并在测试集上进行测试。
阅读全文