python构建知识图谱实战代码

时间: 2023-10-04 09:08:09 浏览: 259
构建知识图谱的代码实现分为以下几步: 1. 数据采集与清洗 2. 实体识别与关系抽取 3. 知识图谱建模 4. 知识图谱可视化 下面是一个简单的知识图谱构建实战代码: ```python # -*- coding: utf-8 -*- import os import json import requests from py2neo import Graph, Node, Relationship # 设置neo4j数据库账号密码 graph = Graph("bolt://localhost:7687", username="neo4j", password="123456") # API接口地址 url = "http://api.ltp-cloud.com/analysis/?api_key=<your_key>&text=" # 实体识别和关系抽取的类型 entity_type = ['nh', 'ni', 'ns', 'nt', 'nw'] relation_type = ['ATT', 'COO', 'VOB', 'SBV', 'FOB', 'POB', 'DBL', 'LAD', 'RAD', 'IS', 'HED'] # 定义实体节点类 class EntityNode(object): def __init__(self, name, type): self.name = name self.type = type def __hash__(self): return hash(self.name) def __eq__(self, other): return self.name == other.name and self.type == other.type def __repr__(self): return self.name # 定义关系节点类 class RelationNode(object): def __init__(self, start_node, end_node, type): self.start_node = start_node self.end_node = end_node self.type = type def __hash__(self): return hash(self.start_node) + hash(self.end_node) def __eq__(self, other): return self.start_node == other.start_node and self.end_node == other.end_node and self.type == other.type # 采集数据并进行清洗 def collect_data(): data = [] with open('data.txt', 'r', encoding='utf-8') as f: for line in f: line = line.strip() if line: data.append(line) return data # 实体识别和关系抽取 def entity_relation_extraction(sentence): entities = [] relations = [] try: response = requests.get(url + sentence) result = json.loads(response.text.strip())['data'][0] for item in result: if item['ne'] in entity_type: entities.append(EntityNode(item['word'], item['ne'])) for item in result: if item['relate'] in relation_type: start_node = EntityNode(item['gov'], item['gov_ne']) end_node = EntityNode(item['dep'], item['dep_ne']) relations.append(RelationNode(start_node, end_node, item['relate'])) except: pass return entities, relations # 知识图谱建模 def build_knowledge_graph(data): for sentence in data: entities, relations = entity_relation_extraction(sentence) for entity in entities: node = Node(entity.type, name=entity.name) graph.merge(node, entity.type, 'name') for relation in relations: start_node = Node(relation.start_node.type, name=relation.start_node.name) end_node = Node(relation.end_node.type, name=relation.end_node.name) graph.merge(start_node, relation.start_node.type, 'name') graph.merge(end_node, relation.end_node.type, 'name') rel = Relationship(start_node, relation.type, end_node) graph.merge(rel) # 知识图谱可视化 def visualize_knowledge_graph(): os.system("neo4j-admin set-initial-password 123456") os.system("neo4j start") os.system("neo4j stop") os.system("neo4j start") os.system("cypher-shell -u neo4j -p 123456 'CREATE CONSTRAINT ON (n:nh) ASSERT n.name IS UNIQUE'") os.system("cypher-shell -u neo4j -p 123456 'CREATE CONSTRAINT ON (n:ni) ASSERT n.name IS UNIQUE'") os.system("cypher-shell -u neo4j -p 123456 'CREATE CONSTRAINT ON (n:ns) ASSERT n.name IS UNIQUE'") os.system("cypher-shell -u neo4j -p 123456 'CREATE CONSTRAINT ON (n:nt) ASSERT n.name IS UNIQUE'") os.system("cypher-shell -u neo4j -p 123456 'CREATE CONSTRAINT ON (n:nw) ASSERT n.name IS UNIQUE'") os.system("cypher-shell -u neo4j -p 123456 'CREATE CONSTRAINT ON ()-[r:ATT]-() ASSERT r.type IS UNIQUE'") os.system("cypher-shell -u neo4j -p 123456 'CREATE CONSTRAINT ON ()-[r:COO]-() ASSERT r.type IS UNIQUE'") os.system("cypher-shell -u neo4j -p 123456 'CREATE CONSTRAINT ON ()-[r:VOB]-() ASSERT r.type IS UNIQUE'") os.system("cypher-shell -u neo4j -p 123456 'CREATE CONSTRAINT ON ()-[r:SBV]-() ASSERT r.type IS UNIQUE'") os.system("cypher-shell -u neo4j -p 123456 'CREATE CONSTRAINT ON ()-[r:FOB]-() ASSERT r.type IS UNIQUE'") os.system("cypher-shell -u neo4j -p 123456 'CREATE CONSTRAINT ON ()-[r:POB]-() ASSERT r.type IS UNIQUE'") os.system("cypher-shell -u neo4j -p 123456 'CREATE CONSTRAINT ON ()-[r:DBL]-() ASSERT r.type IS UNIQUE'") os.system("cypher-shell -u neo4j -p 123456 'CREATE CONSTRAINT ON ()-[r:LAD]-() ASSERT r.type IS UNIQUE'") os.system("cypher-shell -u neo4j -p 123456 'CREATE CONSTRAINT ON ()-[r:RAD]-() ASSERT r.type IS UNIQUE'") os.system("cypher-shell -u neo4j -p 123456 'CREATE CONSTRAINT ON ()-[r:IS]-() ASSERT r.type IS UNIQUE'") os.system("cypher-shell -u neo4j -p 123456 'CREATE CONSTRAINT ON ()-[r:HED]-() ASSERT r.type IS UNIQUE'") if __name__ == '__main__': data = collect_data() build_knowledge_graph(data) visualize_knowledge_graph() ``` 上述代码的实现过程是: 1. 采集数据并进行清洗,将每个句子存储在一个列表中。 2. 对每个句子进行实体识别和关系抽取,得到实体节点和关系节点。 3. 对实体节点和关系节点进行建模,使用py2neo库进行节点和关系的创建。 4. 对知识图谱进行可视化,使用neo4j数据库和cypher语言进行可视化。 其中,实体节点和关系节点的定义分别为EntityNode和RelationNode类,这两个类都包含了节点的名称和类型。在实体识别和关系抽取中,我们通过API接口对输入的句子进行分析,得到每个实体节点和关系节点的名称、类型和关系类型。在知识图谱建模中,我们首先判断节点是否存在,如果节点存在则不创建,否则创建新的节点。同时根据关系节点的起始节点和结束节点,创建关系。最后,我们使用neo4j数据库将知识图谱进行可视化。 需要注意的是,上述代码中的API接口需要替换为自己的接口地址,同时需要安装py2neo库和requests库。

相关推荐

最新推荐

recommend-type

答题辅助python代码实现

【知识点详解】 本题主要涉及的是使用Python编程语言来实现一个答题辅助工具,该工具能够自动识别屏幕上的问题和答案选项。以下是对实现这个功能的关键技术点的详细解释: 1. **屏幕截图**:首先,代码中使用了`...
recommend-type

python中如何设置代码自动提示

在Python编程过程中,代码自动提示是一项非常实用的功能,它能够帮助开发者快速输入代码,提高编写效率,减少出错的可能性。本文将详细介绍如何在PyCharm中设置代码自动提示,并拓展讨论其他编辑器的自动补全功能。 ...
recommend-type

python程序快速缩进多行代码方法总结

理解并熟练掌握如何快速缩进多行代码对于编写高效且易于阅读的Python代码至关重要。 1. **手动缩进** 在IDLE (Python的集成开发环境) 或其他文本编辑器中,你可以手动为每行代码添加空格来缩进。标准的Python缩进...
recommend-type

Python简单实现词云图代码及步骤解析

本教程将详细讲解如何利用Python简单实现词云图,并提供相关的代码示例。 首先,我们需要安装必要的库。在Python中,生成词云图主要依赖于`wordcloud`库。你可以通过`pip`来安装它: ```bash pip install ...
recommend-type

如何使用Cython对python代码进行加密

Cython是一种能够将Python代码转换为C语言的工具,进而编译成二进制形式,实现对Python源码的加密。本文将详细介绍如何使用Cython对Python代码进行加密。 首先,理解Cython的基本概念:Cython是Python的一个超集,...
recommend-type

IPQ4019 QSDK开源代码资源包发布

资源摘要信息:"IPQ4019是高通公司针对网络设备推出的一款高性能处理器,它是为需要处理大量网络流量的网络设备设计的,例如无线路由器和网络存储设备。IPQ4019搭载了强大的四核ARM架构处理器,并且集成了一系列网络加速器和硬件加密引擎,确保网络通信的速度和安全性。由于其高性能的硬件配置,IPQ4019经常用于制造高性能的无线路由器和企业级网络设备。 QSDK(Qualcomm Software Development Kit)是高通公司为了支持其IPQ系列芯片(包括IPQ4019)而提供的软件开发套件。QSDK为开发者提供了丰富的软件资源和开发文档,这使得开发者可以更容易地开发出性能优化、功能丰富的网络设备固件和应用软件。QSDK中包含了内核、驱动、协议栈以及用户空间的库文件和示例程序等,开发者可以基于这些资源进行二次开发,以满足不同客户的需求。 开源代码(Open Source Code)是指源代码可以被任何人查看、修改和分发的软件。开源代码通常发布在公共的代码托管平台,如GitHub、GitLab或SourceForge上,它们鼓励社区协作和知识共享。开源软件能够通过集体智慧的力量持续改进,并且为开发者提供了一个测试、验证和改进软件的机会。开源项目也有助于降低成本,因为企业或个人可以直接使用社区中的资源,而不必从头开始构建软件。 U-Boot是一种流行的开源启动加载程序,广泛用于嵌入式设备的引导过程。它支持多种处理器架构,包括ARM、MIPS、x86等,能够初始化硬件设备,建立内存空间的映射,从而加载操作系统。U-Boot通常作为设备启动的第一段代码运行,它为系统提供了灵活的接口以加载操作系统内核和文件系统。 标题中提到的"uci-2015-08-27.1.tar.gz"是一个开源项目的压缩包文件,其中"uci"很可能是指一个具体项目的名称,比如U-Boot的某个版本或者是与U-Boot配置相关的某个工具(U-Boot Config Interface)。日期"2015-08-27.1"表明这是该项目的2015年8月27日的第一次更新版本。".tar.gz"是Linux系统中常用的归档文件格式,用于将多个文件打包并进行压缩,方便下载和分发。" 描述中复述了标题的内容,强调了文件是关于IPQ4019处理器的QSDK资源,且这是一个开源代码包。此处未提供额外信息。 标签"软件/插件"指出了这个资源的性质,即它是一个软件资源,可能包含程序代码、库文件或者其他可以作为软件一部分的插件。 在文件名称列表中,"uci-2015-08-27.1"与标题保持一致,表明这是一个特定版本的软件或代码包。由于实际的文件列表中只提供了这一项,我们无法得知更多的文件信息,但可以推测这是一个单一文件的压缩包。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【PDF表格创建与编辑】:使用Apache PDFBox和iText库制作表格,表格处理不求人

![java 各种pdf处理常用库介绍与使用](https://img-blog.csdnimg.cn/img_convert/6ae15afdef45b1d8fe6d289f0065d18c.png) # 1. PDF表格创建与编辑概述 在当今数字化时代,PDF格式因其可移植性和可维护性成为了电子文档的首选。在诸多应用场景中,表格作为一种重要的信息传递工具,其创建与编辑的需求日益增长。本章节将为读者提供一个关于PDF表格创建与编辑的概述,为后续章节中使用Apache PDFBox和iText库进行深入探讨奠定基础。 ## 1.1 PDF表格的作用与重要性 PDF表格在商务沟通、数据分析
recommend-type

python输出txt文件

在Python中,你可以使用内置的`open()`函数来创建和写入TXT文件。下面是一个简单的例子: ```python # 打开文件(如果不存在则创建) with open('example.txt', 'w') as file: # 写入文本内容 file.write('这是你要写入的内容') # 如果你想追加内容而不是覆盖原有文件 # 使用 'a' 模式(append) # with open('example.txt', 'a') as file: # file.write('\n这是追加的内容') # 关闭文件时会自动调用 `close()` 方法,但使
recommend-type

高频组电赛必备:掌握数字频率合成模块要点

资源摘要信息:"2022年电赛 高频组必备模块 数字频率合成模块" 数字频率合成(DDS,Direct Digital Synthesis)技术是现代电子工程中的一种关键技术,它允许通过数字方式直接生成频率可调的模拟信号。本模块是高频组电赛参赛者必备的组件之一,对于参赛者而言,理解并掌握其工作原理及应用是至关重要的。 本数字频率合成模块具有以下几个关键性能参数: 1. 供电电压:模块支持±5V和±12V两种供电模式,这为用户提供了灵活的供电选择。 2. 外部晶振:模块自带两路输出频率为125MHz的外部晶振,为频率合成提供了高稳定性的基准时钟。 3. 输出信号:模块能够输出两路频率可调的正弦波信号。其中,至少有一路信号的幅度可以编程控制,这为信号的调整和应用提供了更大的灵活性。 4. 频率分辨率:模块提供的频率分辨率为0.0291Hz,这样的精度意味着可以实现非常精细的频率调节,以满足高频应用中的严格要求。 5. 频率计算公式:模块输出的正弦波信号频率表达式为 fout=(K/2^32)×CLKIN,其中K为设置的频率控制字,CLKIN是外部晶振的频率。这一计算方式表明了频率输出是通过编程控制的频率控制字来设定,从而实现高精度的频率合成。 在高频组电赛中,参赛者不仅需要了解数字频率合成模块的基本特性,还应该能够将这一模块与其他模块如移相网络模块、调幅调频模块、AD9854模块和宽带放大器模块等结合,以构建出性能更优的高频信号处理系统。 例如,移相网络模块可以实现对信号相位的精确控制,调幅调频模块则能够对信号的幅度和频率进行调整。AD9854模块是一种高性能的DDS芯片,可以用于生成复杂的波形。而宽带放大器模块则能够提供足够的增益和带宽,以保证信号在高频传输中的稳定性和强度。 在实际应用中,电赛参赛者需要根据项目的具体要求来选择合适的模块组合,并进行硬件的搭建与软件的编程。对于数字频率合成模块而言,还需要编写相应的控制代码以实现对K值的设定,进而调节输出信号的频率。 交流与讨论在电赛准备过程中是非常重要的。与队友、指导老师以及来自同一领域的其他参赛者进行交流,不仅可以帮助解决技术难题,还可以相互启发,激发出更多创新的想法和解决方案。 总而言之,对于高频组的电赛参赛者来说,数字频率合成模块是核心组件之一。通过深入了解和应用该模块的特性,结合其他模块的协同工作,参赛者将能够构建出性能卓越的高频信号处理设备,从而在比赛中取得优异成绩。