python构建知识图谱实战代码
时间: 2023-10-04 18:08:09 浏览: 310
知识图谱项目实战(一):瑞金医院MMC人工智能辅助构建知识图谱--初赛实体识别【1】码源。本地代码推荐BiLSTM+CRF
5星 · 资源好评率100%
构建知识图谱的代码实现分为以下几步:
1. 数据采集与清洗
2. 实体识别与关系抽取
3. 知识图谱建模
4. 知识图谱可视化
下面是一个简单的知识图谱构建实战代码:
```python
# -*- coding: utf-8 -*-
import os
import json
import requests
from py2neo import Graph, Node, Relationship
# 设置neo4j数据库账号密码
graph = Graph("bolt://localhost:7687", username="neo4j", password="123456")
# API接口地址
url = "http://api.ltp-cloud.com/analysis/?api_key=<your_key>&text="
# 实体识别和关系抽取的类型
entity_type = ['nh', 'ni', 'ns', 'nt', 'nw']
relation_type = ['ATT', 'COO', 'VOB', 'SBV', 'FOB', 'POB', 'DBL', 'LAD', 'RAD', 'IS', 'HED']
# 定义实体节点类
class EntityNode(object):
def __init__(self, name, type):
self.name = name
self.type = type
def __hash__(self):
return hash(self.name)
def __eq__(self, other):
return self.name == other.name and self.type == other.type
def __repr__(self):
return self.name
# 定义关系节点类
class RelationNode(object):
def __init__(self, start_node, end_node, type):
self.start_node = start_node
self.end_node = end_node
self.type = type
def __hash__(self):
return hash(self.start_node) + hash(self.end_node)
def __eq__(self, other):
return self.start_node == other.start_node and self.end_node == other.end_node and self.type == other.type
# 采集数据并进行清洗
def collect_data():
data = []
with open('data.txt', 'r', encoding='utf-8') as f:
for line in f:
line = line.strip()
if line:
data.append(line)
return data
# 实体识别和关系抽取
def entity_relation_extraction(sentence):
entities = []
relations = []
try:
response = requests.get(url + sentence)
result = json.loads(response.text.strip())['data'][0]
for item in result:
if item['ne'] in entity_type:
entities.append(EntityNode(item['word'], item['ne']))
for item in result:
if item['relate'] in relation_type:
start_node = EntityNode(item['gov'], item['gov_ne'])
end_node = EntityNode(item['dep'], item['dep_ne'])
relations.append(RelationNode(start_node, end_node, item['relate']))
except:
pass
return entities, relations
# 知识图谱建模
def build_knowledge_graph(data):
for sentence in data:
entities, relations = entity_relation_extraction(sentence)
for entity in entities:
node = Node(entity.type, name=entity.name)
graph.merge(node, entity.type, 'name')
for relation in relations:
start_node = Node(relation.start_node.type, name=relation.start_node.name)
end_node = Node(relation.end_node.type, name=relation.end_node.name)
graph.merge(start_node, relation.start_node.type, 'name')
graph.merge(end_node, relation.end_node.type, 'name')
rel = Relationship(start_node, relation.type, end_node)
graph.merge(rel)
# 知识图谱可视化
def visualize_knowledge_graph():
os.system("neo4j-admin set-initial-password 123456")
os.system("neo4j start")
os.system("neo4j stop")
os.system("neo4j start")
os.system("cypher-shell -u neo4j -p 123456 'CREATE CONSTRAINT ON (n:nh) ASSERT n.name IS UNIQUE'")
os.system("cypher-shell -u neo4j -p 123456 'CREATE CONSTRAINT ON (n:ni) ASSERT n.name IS UNIQUE'")
os.system("cypher-shell -u neo4j -p 123456 'CREATE CONSTRAINT ON (n:ns) ASSERT n.name IS UNIQUE'")
os.system("cypher-shell -u neo4j -p 123456 'CREATE CONSTRAINT ON (n:nt) ASSERT n.name IS UNIQUE'")
os.system("cypher-shell -u neo4j -p 123456 'CREATE CONSTRAINT ON (n:nw) ASSERT n.name IS UNIQUE'")
os.system("cypher-shell -u neo4j -p 123456 'CREATE CONSTRAINT ON ()-[r:ATT]-() ASSERT r.type IS UNIQUE'")
os.system("cypher-shell -u neo4j -p 123456 'CREATE CONSTRAINT ON ()-[r:COO]-() ASSERT r.type IS UNIQUE'")
os.system("cypher-shell -u neo4j -p 123456 'CREATE CONSTRAINT ON ()-[r:VOB]-() ASSERT r.type IS UNIQUE'")
os.system("cypher-shell -u neo4j -p 123456 'CREATE CONSTRAINT ON ()-[r:SBV]-() ASSERT r.type IS UNIQUE'")
os.system("cypher-shell -u neo4j -p 123456 'CREATE CONSTRAINT ON ()-[r:FOB]-() ASSERT r.type IS UNIQUE'")
os.system("cypher-shell -u neo4j -p 123456 'CREATE CONSTRAINT ON ()-[r:POB]-() ASSERT r.type IS UNIQUE'")
os.system("cypher-shell -u neo4j -p 123456 'CREATE CONSTRAINT ON ()-[r:DBL]-() ASSERT r.type IS UNIQUE'")
os.system("cypher-shell -u neo4j -p 123456 'CREATE CONSTRAINT ON ()-[r:LAD]-() ASSERT r.type IS UNIQUE'")
os.system("cypher-shell -u neo4j -p 123456 'CREATE CONSTRAINT ON ()-[r:RAD]-() ASSERT r.type IS UNIQUE'")
os.system("cypher-shell -u neo4j -p 123456 'CREATE CONSTRAINT ON ()-[r:IS]-() ASSERT r.type IS UNIQUE'")
os.system("cypher-shell -u neo4j -p 123456 'CREATE CONSTRAINT ON ()-[r:HED]-() ASSERT r.type IS UNIQUE'")
if __name__ == '__main__':
data = collect_data()
build_knowledge_graph(data)
visualize_knowledge_graph()
```
上述代码的实现过程是:
1. 采集数据并进行清洗,将每个句子存储在一个列表中。
2. 对每个句子进行实体识别和关系抽取,得到实体节点和关系节点。
3. 对实体节点和关系节点进行建模,使用py2neo库进行节点和关系的创建。
4. 对知识图谱进行可视化,使用neo4j数据库和cypher语言进行可视化。
其中,实体节点和关系节点的定义分别为EntityNode和RelationNode类,这两个类都包含了节点的名称和类型。在实体识别和关系抽取中,我们通过API接口对输入的句子进行分析,得到每个实体节点和关系节点的名称、类型和关系类型。在知识图谱建模中,我们首先判断节点是否存在,如果节点存在则不创建,否则创建新的节点。同时根据关系节点的起始节点和结束节点,创建关系。最后,我们使用neo4j数据库将知识图谱进行可视化。
需要注意的是,上述代码中的API接口需要替换为自己的接口地址,同时需要安装py2neo库和requests库。
阅读全文