parser.add_argument('--weight', type=str, help="Path to the checkpoint.")这句代码中的weight文件位于E:\Running\LoFTR\demo、outdoor_ds.ckpt这个地址,该如何修改这句代码
时间: 2023-12-14 17:39:38 浏览: 153
如果你想修改该代码中的 `weight` 参数为 `E:\Running\LoFTR\demo\outdoor_ds.ckpt`,可以将该代码修改为:
```
parser.add_argument('--weight', type=str, default='E:/Running/LoFTR/demo/outdoor_ds.ckpt', help="Path to the checkpoint.")
```
注意,Windows 下的路径分隔符应该使用反斜杠 `\` 而不是正斜杠 `/`。如果你使用正斜杠 `/` 会出现语法错误。另外,如果你使用反斜杠 `\`,需要在字符串前面加上 `r` 来表示该字符串是 raw string,例如 `r'E:\Running\LoFTR\demo\outdoor_ds.ckpt'`。
相关问题
arser = argparse.ArgumentParser(description="Run GHCN.") parser.add_argument('--data_path', type=str, default='./data/', help='Input data path') parser.add_argument('--model_path', type=str, default='checkpoint.pt', help='Saved model path.') parser.add_argument('--dataset', type=str, default='Cora', help='Choose a dataset from {Cora, CiteSeer, PubMed}') parser.add_argument('--split', type=str, default='full', help='The type of dataset split {public, full, random}') parser.add_argument('--trim_prob', type=float, default=0.2, help='The probability to trim adj, 0 not trim, 1 trim') parser.add_argument('--seed', type=int, default=123, help='Random seed') parser.add_argument('--epoch', type=int, default=1000, help='Number of epochs to train') parser.add_argument('--lr', type=float, default=0.005, help='Initial learning rate') parser.add_argument('--weight_decay', type=float, default=5e-4, help='Weight decay (L2 norm on parameters)') parser.add_argument('--k', type=int, default=10, help='k-hop aggregation') parser.add_argument('--hidden', type=int, default=64, help='Number of hidden units') parser.add_argument('--dropout', type=float, default=0.7, help='Dropout rate') parser.add_argument('--patience', type=int, default=100, help='How long to wait after last time validation improved') args = parser.parse_args() for arg in vars(args): print('{0} = {1}'.format(arg, getattr(args, arg))) 修改代码要求:如果dataset不等于{Cora, CiteSeer, PubMed}中的任何一项则不打印split
修改后的代码如下:
```python
import argparse
parser = argparse.ArgumentParser(description="Run GHCN.")
parser.add_argument('--data_path', type=str, default='./data/', help='Input data path')
parser.add_argument('--model_path', type=str, default='checkpoint.pt', help='Saved model path.')
parser.add_argument('--dataset', type=str, default='Cora', help='Choose a dataset from {Cora, CiteSeer, PubMed}')
parser.add_argument('--split', type=str, default='full', help='The type of dataset split {public, full, random}')
parser.add_argument('--trim_prob', type=float, default=0.2, help='The probability to trim adj, 0 not trim, 1 trim')
parser.add_argument('--seed', type=int, default=123, help='Random seed')
parser.add_argument('--epoch', type=int, default=1000, help='Number of epochs to train')
parser.add_argument('--lr', type=float, default=0.005, help='Initial learning rate')
parser.add_argument('--weight_decay', type=float, default=5e-4, help='Weight decay (L2 norm on parameters)')
parser.add_argument('--k', type=int, default=10, help='k-hop aggregation')
parser.add_argument('--hidden', type=int, default=64, help='Number of hidden units')
parser.add_argument('--dropout', type=float, default=0.7, help='Dropout rate')
parser.add_argument('--patience', type=int, default=100, help='How long to wait after last time validation improved')
args = parser.parse_args()
if args.dataset in {'Cora', 'CiteSeer', 'PubMed'}:
for arg in vars(args):
print('{0} = {1}'.format(arg, getattr(args, arg)))
else:
print("Invalid dataset! Valid options are {Cora, CiteSeer, PubMed}.")
```
如果输入的 dataset 不是 {Cora, CiteSeer, PubMed} 中的任何一项,将会输出 "Invalid dataset! Valid options are {Cora, CiteSeer, PubMed}.",否则将会输出各个参数的值。
if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--epochs", type=int, default=100, help="number of epochs") parser.add_argument("--batch_size", type=int, default=4, help="size of each image batch") parser.add_argument("--gradient_accumulations", type=int, default=2, help="number of gradient accums before step") parser.add_argument("--model_def", type=str, default="config/yolov3.cfg", help="path to model definition file") parser.add_argument("--data_config", type=str, default="config/coco.data", help="path to data config file") parser.add_argument("--pretrained_weights", type=str, help="if specified starts from checkpoint model") parser.add_argument("--n_cpu", type=int, default=0, help="number of cpu threads to use during batch generation") parser.add_argument("--img_size", type=int, default=416, help="size of each image dimension") parser.add_argument("--checkpoint_interval", type=int, default=1, help="interval between saving model weights") parser.add_argument("--evaluation_interval", type=int, default=1, help="interval evaluations on validation set") parser.add_argument("--compute_map", default=False, help="if True computes mAP every tenth batch") parser.add_argument("--multiscale_training", default=True, help="allow for multi-scale training") opt = parser.parse_args() print(opt)
这段代码是一个 Python 脚本,用于训练 YOLOv3 目标检测模型。它使用 argparse 模块来解析命令行参数,并将这些参数存储在 opt 对象中。这些参数包括训练轮数、批量大小、梯度积累次数、模型定义文件路径、数据配置文件路径、预训练权重文件路径、CPU 线程数、图像大小、保存模型权重的间隔、在验证集上评估的间隔、是否计算 mAP、是否允许多尺度训练等。最后,它打印出 opt 对象的值。
阅读全文