写一个用ROS系统结合opencv控制工业机器人的程序
时间: 2023-10-01 08:08:23 浏览: 176
好的,以下是一个简单的用ROS系统结合OpenCV控制工业机器人的程序:
1. 首先,我们需要安装ROS系统和相关的机器人控制库,可以参考ROS官网的安装指南进行安装。
2. 然后,我们需要创建一个ROS包来管理我们的程序,可以使用以下命令创建一个名为"robot_control"的ROS包:
```
$ cd ~/catkin_ws/src
$ catkin_create_pkg robot_control rospy
```
3. 接下来,在"robot_control"包中创建一个名为"robot_control.py"的Python文件,用于控制工业机器人。代码如下:
```python
#!/usr/bin/env python
import rospy
from std_msgs.msg import String
from sensor_msgs.msg import Image
from cv_bridge import CvBridge, CvBridgeError
import cv2
import numpy as np
import robot_control # 导入机器人控制库
class RobotControlNode:
def __init__(self):
# 初始化ROS节点
rospy.init_node('robot_control_node', anonymous=True)
# 创建一个OpenCV窗口
cv2.namedWindow("Robot Control")
# 定义机器人的起始位置
self.robot_pos = [0, 0, 0]
# 定义机器人的运动速度
self.robot_speed = 10
# 定义目标位置
self.target_pos = [200, 200, 0]
# 初始化CvBridge
self.bridge = CvBridge()
# 订阅摄像头图像
self.image_sub = rospy.Subscriber('/camera/image_raw', Image, self.image_callback)
def image_callback(self, data):
try:
# 将ROS图像数据转换为OpenCV图像格式
cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8")
except CvBridgeError as e:
print(e)
# 在图像中寻找目标物体
# 这里假设目标物体是一张红色的圆形
hsv = cv2.cvtColor(cv_image, cv2.COLOR_BGR2HSV)
lower_red = np.array([0, 50, 50])
upper_red = np.array([10, 255, 255])
mask = cv2.inRange(hsv, lower_red, upper_red)
contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
if len(contours) > 0:
# 找到目标物体的中心点坐标
M = cv2.moments(contours[0])
cx = int(M['m10']/M['m00'])
cy = int(M['m01']/M['m00'])
cv2.circle(cv_image, (cx, cy), 10, (0, 0, 255), -1)
# 计算机器人需要移动的距离和方向
dx = self.target_pos[0] - cx
dy = self.target_pos[1] - cy
angle = np.arctan2(dy, dx)
# 计算机器人需要移动的距离
distance = np.sqrt(dx*dx + dy*dy)
if distance > 10:
# 控制机器人移动
self.robot_pos[0] += self.robot_speed * np.cos(angle)
self.robot_pos[1] += self.robot_speed * np.sin(angle)
robot_control.move_to(self.robot_pos[0], self.robot_pos[1], self.robot_pos[2])
# 显示图像和机器人位置
cv2.imshow("Robot Control", cv_image)
print("Robot Position: ", self.robot_pos)
cv2.waitKey(1)
if __name__ == '__main__':
try:
node = RobotControlNode()
rospy.spin()
except rospy.ROSInterruptException:
pass
```
这段代码中我们创建了一个名为"robot_control_node"的ROS节点,并订阅摄像头的图像数据。在回调函数中,我们使用OpenCV来寻找图像中的目标物体,并根据目标物体的位置来控制机器人移动到合适的位置。注意,这里使用了机器人控制库来控制机器人的移动,需要根据具体情况进行实现。
4. 最后,在"robot_control"包中创建一个名为"launch"的文件夹,用于启动ROS节点。在该文件夹中创建一个名为"robot_control.launch"的文件,代码如下:
```xml
<launch>
<node name="robot_control_node" type="robot_control.py" output="screen"/>
</launch>
```
这段代码中我们定义了一个名为"robot_control_node"的节点,并指定了启动的程序为"robot_control.py",输出信息到屏幕上。
5. 启动ROS节点,使用以下命令启动程序:
```
$ roslaunch robot_control robot_control.launch
```
这样,我们就可以结合ROS系统和OpenCV控制工业机器人了。
阅读全文