python实现的基于蒙特卡洛树搜索(MCTS)与UCT 的五子棋游戏的代码
时间: 2024-03-05 22:54:33 浏览: 205
好的,以下是一个基于Python实现的基于MCTS和UCT的五子棋游戏AI的代码示例:
``` python
import random
import math
class TreeNode:
def __init__(self, state, parent=None):
self.state = state
self.parent = parent
self.children = []
self.visits = 0
self.score = 0
def UCT(node):
C = 1.4
if node.visits == 0:
return float('inf')
return (node.score / node.visits) + C * math.sqrt(math.log(node.parent.visits) / node.visits)
def MCTS(state, iterations):
root = TreeNode(state)
for i in range(iterations):
node = root
# selection
while node.children:
node = max(node.children, key=UCT)
# expansion
if node.visits > 0:
moves = node.state.get_moves()
for move in moves:
if move not in [c.state.last_move for c in node.children]:
child_state = node.state.apply_move(move)
child_node = TreeNode(child_state, node)
node.children.append(child_node)
# simulation
sim_node = node
while sim_node.children:
sim_node = random.choice(sim_node.children)
score = simulate(sim_node.state)
# backpropagation
while node:
node.visits += 1
node.score += score
node = node.parent
return max(root.children, key=lambda c: c.visits).state.last_move
def simulate(state):
player = state.get_current_player()
while not state.is_terminal():
move = random.choice(state.get_moves())
state = state.apply_move(move)
player = state.get_current_player()
if state.get_winner() == player:
return 1
elif state.get_winner() == None:
return 0.5
else:
return 0
class Board:
def __init__(self, width=15, height=15, win_length=5):
self.width = width
self.height = height
self.win_length = win_length
self.board = [[None for y in range(height)] for x in range(width)]
self.last_move = None
def get_moves(self):
moves = []
for x in range(self.width):
for y in range(self.height):
if self.board[x][y] == None:
moves.append((x, y))
return moves
def apply_move(self, move):
x, y = move
player = self.get_current_player()
new_board = Board(self.width, self.height, self.win_length)
new_board.board = [row[:] for row in self.board]
new_board.board[x][y] = player
new_board.last_move = move
return new_board
def get_current_player(self):
if sum(row.count(None) for row in self.board) % 2 == 0:
return "X"
else:
return "O"
def is_terminal(self):
if self.get_winner() != None:
return True
for x in range(self.width):
for y in range(self.height):
if self.board[x][y] == None:
return False
return True
def get_winner(self):
for x in range(self.width):
for y in range(self.height):
if self.board[x][y] == None:
continue
if x + self.win_length <= self.width:
if all(self.board[x+i][y] == self.board[x][y] for i in range(self.win_length)):
return self.board[x][y]
if y + self.win_length <= self.height:
if all(self.board[x][y+i] == self.board[x][y] for i in range(self.win_length)):
return self.board[x][y]
if x + self.win_length <= self.width and y + self.win_length <= self.height:
if all(self.board[x+i][y+i] == self.board[x][y] for i in range(self.win_length)):
return self.board[x][y]
if x + self.win_length <= self.width and y - self.win_length >= -1:
if all(self.board[x+i][y-i] == self.board[x][y] for i in range(self.win_length)):
return self.board[x][y]
return None
def __str__(self):
return "\n".join(" ".join(self.board[x][y] or "-" for x in range(self.width)) for y in range(self.height))
if __name__ == "__main__":
board = Board()
while not board.is_terminal():
if board.get_current_player() == "X":
x, y = map(int, input("Enter move (x y): ").split())
board = board.apply_move((x, y))
else:
move = MCTS(board, 1000)
print("AI move:", move)
board = board.apply_move(move)
print(board)
print("Winner:", board.get_winner())
```
该代码定义了一个 `TreeNode` 类来保存节点的状态和统计信息,实现了基于UCB公式的UCT算法和基于MCTS和UCT的五子棋AI。同时,代码还定义了一个 `Board` 类来表示五子棋游戏的状态和规则,并实现了判断胜负、获取可行落子位置等方法。在 `__main__` 函数中,代码通过交替输入玩家落子位置和调用AI选择落子位置的方式,实现了人机对战的功能。
希望这个代码对你有所帮助!
阅读全文