name = 'Merchant_id' # 折扣率排序 datas[name_prifix + 'discount_rateRank'] =datas.groupby(name)['discount_rate'].rank(ascending = False) datas[name_prifix + 'discount_rateRankAscend'] = datas.groupby(name)['discount_rate'].rank(ascending = True) # 距离排序 datas[name_prifix + 'distanceRank'] = datas.groupby(name)['Distance'].rank(ascending = False) datas[name_prifix + 'distanceRankAscend']=datas.groupby(name)['Distance'].rank(ascending = True) # 领券日期排序 datas[name_prifix + 'date_receivedRank'] =datas.groupby(name)['Date_received'].rank(ascending = False) datas[name_prifix + 'date_receivedRankAscend'] = datas.groupby(name)['Date_received'].rank(ascending = True)请帮我用groupby改写
时间: 2024-02-04 16:04:22 浏览: 91
好的,我可以帮你用groupby重写这段代码。你可以这样写:
```
cols = ['discount_rate', 'Distance', 'Date_received']
for col in cols:
datas[name_prifix + col + 'Rank'] = datas.groupby(name)[col].rank(ascending=False)
datas[name_prifix + col + 'RankAscend'] = datas.groupby(name)[col].rank(ascending=True)
```
这样,你就能用groupby对每一列进行操作,避免了多次重复写代码的问题。
相关问题
WITH filtered_goods AS ( SELECT model FROM base_goods AS bg WHERE bg.type_one = 1 ), aggregated_orders AS ( SELECT og.goods_model, m.merchant_id, SUM( og.buy_num ) AS amount FROM order_goods AS og JOIN orders AS m ON og.order_id = m.id WHERE m.`status` IN ( 0, 2, 3, 5, 6, 8, 9, 10, 11, 17 ) AND og.goods_model IN ( SELECT model FROM filtered_goods ) GROUP BY m.merchant_id, og.goods_model ) SELECT m.merchant_id, m.goods_model, m.amount, bg.market_date, bg.short_name, mr.shop_name FROM aggregated_orders AS m JOIN base_goods AS bg ON m.goods_model = bg.model JOIN merchant AS mr ON m.merchant_id = mr.id
这是一段SQL查询语句,大致意思是根据一些条件过滤出符合要求的商品,然后统计出每个商家销售的该商品的数量。最后再将这些信息与商家名称、商品名称等信息一起查询出来。
具体来说,这个查询语句先用一个子查询过滤出类型为1的商品,然后在orders表和order_goods表中根据一些状态条件和商品型号条件筛选订单,统计出每个商家销售的每个商品数量,最后通过JOIN操作连接base_goods表和merchant表,查询出商品名称、市场时间、商家名称等信息。
@Table(name = "T_BUS_QUERYlIST") public class BusQueryList { @Id @Column(name = "ID") @GeneratedValue(generator = "jpa-uuid") private String id; @Column(name = "merchant_no") private String merchantNo; @Column(name = "merchant_clr_date") private String merchantClrDate; @Column(name = "merchant_order_no") private String merchantOrderNo; @Column(name = "media_type") private String mediaType; @Column(name = "sub_card_no") private String subCardNo; @Column(name = "card_belong_type") private String cardBelongType; @Column(name = "card_belong_code") private String cardBelongCode; @Column(name = "customer_id") private String customerId; @Column(name = "cert_no") private String certNo; @Column(name = "name") private String name; @Column(name = "bus_type") private String busType; @Column(name = "bus_id") private String busId; @Column(name = "bus_router") private String busRouter; }
根据实体类生成建表语句可以使用 JPA 自带的 `SchemaExport` 工具类。
示例代码如下:
```
import javax.persistence.Persistence;
import org.hibernate.tool.hbm2ddl.SchemaExport;
public class GenerateTableDDL {
public static void main(String[] args) {
// 指定持久化单元名称
String persistenceUnitName = "persistence-unit-name";
// 获取 EntityManagerFactory
EntityManagerFactory entityManagerFactory = Persistence.createEntityManagerFactory(persistenceUnitName);
// 实例化 SchemaExport
SchemaExport schemaExport = new SchemaExport();
// 设置输出格式
schemaExport.setFormat(true);
// 设置输出文件路径
schemaExport.setOutputFile("ddl.sql");
// 获取 Configuration
Configuration configuration = new Configuration().configure(persistenceUnitName, null);
// 获取 MetadataSources
MetadataSources metadataSources = new MetadataSources(new StandardServiceRegistryBuilder().build());
// 添加实体类
metadataSources.addAnnotatedClass(BusQueryList.class);
// 获取 Metadata
Metadata metadata = metadataSources.buildMetadata();
// 设置 Metadata
schemaExport.create(EnumSet.of(TargetType.SCRIPT), metadata);
// 关闭 EntityManagerFactory
entityManagerFactory.close();
}
}
```
其中,`persistence-unit-name` 是持久化单元的名称,需要根据实际情况进行修改。`ddl.sql` 是输出的建表语句文件名,可以根据需要修改。`BusQueryList` 是实体类名,需要根据实际情况进行修改。
执行该程序后,会在指定的输出文件路径下生成建表语句。
阅读全文