图像风格迁移代码(PyTorch)
时间: 2023-06-17 18:07:20 浏览: 133
图像风格迁移.md pytorch
以下是一个简单的图像风格迁移代码,使用PyTorch实现:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.models as models
import torchvision.datasets as datasets
import matplotlib.pyplot as plt
# 定义图像处理的转换
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# 加载图像数据集
content_dataset = datasets.ImageFolder('content_images_folder_path', transform=transform)
style_dataset = datasets.ImageFolder('style_images_folder_path', transform=transform)
# 创建数据加载器
content_loader = torch.utils.data.DataLoader(content_dataset, batch_size=1, shuffle=True)
style_loader = torch.utils.data.DataLoader(style_dataset, batch_size=1, shuffle=True)
# 加载预训练的VGG19模型
vgg = models.vgg19(pretrained=True).features
for param in vgg.parameters():
param.requires_grad_(False)
# 将模型移至GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
vgg.to(device)
# 定义内容损失函数
def content_loss(content_features, target_features):
return torch.mean((content_features - target_features)**2)
# 定义风格损失函数
def gram_matrix(input):
a, b, c, d = input.size()
features = input.view(a * b, c * d)
G = torch.mm(features, features.t())
return G.div(a * b * c * d)
def style_loss(style_features, target_features):
style_gram = gram_matrix(style_features)
target_gram = gram_matrix(target_features)
return torch.mean((style_gram - target_gram)**2)
# 定义优化器
optimizer = optim.Adam([target], lr=0.01)
# 迭代次数
epochs = 500
# 定义目标图像
target = torch.randn(content_dataset[0][0].shape, requires_grad=True).to(device)
# 迭代训练
for epoch in range(epochs):
for content, style in zip(content_loader, style_loader):
# 将内容图像和风格图像传入模型
content_features = vgg(content[0].to(device))
style_features = vgg(style[0].to(device))
target_features = vgg(target)
# 计算损失函数
content_loss_value = content_loss(content_features, target_features)
style_loss_value = style_loss(style_features, target_features)
loss = content_loss_value + style_loss_value
# 反向传播优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 打印损失函数和目标图像
if epoch % 100 == 0:
print(f"Epoch {epoch}, Content Loss: {content_loss_value.item()}, Style Loss: {style_loss_value.item()}")
plt.imshow(target.detach().cpu().squeeze().permute(1, 2, 0).numpy())
plt.show()
```
需要将代码中的`content_images_folder_path`和`style_images_folder_path`修改为实际的内容图像和风格图像所在的文件夹路径。
阅读全文