商旅问题的路径优化代码
时间: 2024-05-06 21:20:31 浏览: 59
python 编写 旅行商路径优化问题的遗传算法程序
5星 · 资源好评率100%
以下是一个基于贪心算法的商旅问题路径优化代码示例:
```python
import numpy as np
def tsp(points):
n = len(points)
# 计算距离矩阵
dist = np.zeros((n, n))
for i in range(n):
for j in range(i+1, n):
dist[i][j] = dist[j][i] = np.linalg.norm(points[i]-points[j])
# 初始化路径和距离
path = [0]
distance = 0
# 贪心选择最近的下一个点
while len(path) < n:
current = path[-1]
next_node = None
min_dist = np.inf
for i in range(n):
if i not in path:
if dist[current][i] < min_dist:
min_dist = dist[current][i]
next_node = i
distance += min_dist
path.append(next_node)
# 回到起点
distance += dist[path[-1]][0]
path.append(0)
return path, distance
# 测试
points = np.array([[0, 0], [0, 1], [1, 1], [1, 0]])
path, distance = tsp(points)
print('Path:', path)
print('Distance:', distance)
```
输出结果:
```
Path: [0, 1, 2, 3, 0]
Distance: 4.0
```
该代码使用numpy库计算距离矩阵,并使用贪心算法选择下一个最近的点,直到所有点都被遍历。最后将路径回到起点,并计算总距离。
阅读全文