想得到learning_curve 函数中的train_loss值参数如何设置

时间: 2023-08-25 08:06:05 浏览: 90
要获取train_loss值,您需要在模型训练时记录每个epoch的训练损失。在PyTorch中,可以使用torch.utils.tensorboard.SummaryWriter将数据写入TensorBoard,并在TensorBoard中查看学习曲线。以下是一个示例代码片段,展示了如何在每个epoch中记录训练损失: ``` from torch.utils.tensorboard import SummaryWriter writer = SummaryWriter() for epoch in range(num_epochs): # 训练模型 train_loss = ... # 记录训练损失 writer.add_scalar('Train/Loss', train_loss, epoch) ``` 其中,'Train/Loss'是记录训练损失的标签,train_loss是当前epoch的训练损失值,epoch是当前epoch的编号。您可以根据需要设置标签和记录的数据。在训练完成后,您可以使用TensorBoard查看学习曲线。
相关问题

需要在learning_curve函数里里得到train_loss,score参数如何设置

在 `learning_curve` 函数中,`train_loss` 和 `score` 参数都需要传入一个函数对象,分别用于计算训练损失和评估模型性能。 对于 `train_loss` 参数,你可以传入一个函数来计算每一轮训练后的损失,该函数应该接受一个训练集的迭代器和模型对象,然后返回当前训练轮次的平均损失。 对于 `score` 参数,通常情况下,你可以传入一个函数来评估模型的性能,该函数应该接受一个测试集的迭代器和模型对象,然后返回一个评估指标,例如准确率、F1 值等等。 具体的实现,可以参考以下示例代码: ```python import torch from sklearn.metrics import accuracy_score def train_loss(data_loader, model): model.train() loss_fn = torch.nn.CrossEntropyLoss() total_loss = 0.0 n = 0 for batch in data_loader: inputs, targets = batch outputs = model(inputs) loss = loss_fn(outputs, targets) total_loss += loss.item() * len(inputs) n += len(inputs) return total_loss / n def test_score(data_loader, model): model.eval() y_true, y_pred = [], [] with torch.no_grad(): for batch in data_loader: inputs, targets = batch outputs = model(inputs) _, preds = torch.max(outputs, dim=1) y_true.extend(targets.tolist()) y_pred.extend(preds.tolist()) return accuracy_score(y_true, y_pred) # 使用示例 from torch.utils.data import DataLoader, TensorDataset import numpy as np X_train = np.random.random(size=(1000, 10)) y_train = np.random.randint(0, 2, size=(1000,)) train_dataset = TensorDataset(torch.tensor(X_train), torch.tensor(y_train)) train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True) X_test = np.random.random(size=(200, 10)) y_test = np.random.randint(0, 2, size=(200,)) test_dataset = TensorDataset(torch.tensor(X_test), torch.tensor(y_test)) test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False) from skorch import NeuralNetClassifier from skorch.callbacks import EarlyStopping net = NeuralNetClassifier( module=torch.nn.Linear(10, 2), criterion=torch.nn.CrossEntropyLoss, optimizer=torch.optim.SGD, max_epochs=100, callbacks=[EarlyStopping(patience=5)], ) from skorch.utils import to_device from functools import partial to_device(net, 'cuda') partial_train_loss = partial(train_loss, model=net.module_) partial_test_score = partial(test_score, model=net.module_) from skorch.utils import to_numpy train_loss_values, test_score_values = learning_curve( net, train_loader, train_sizes=np.linspace(0.1, 1.0, 5), scoring=partial_test_score, scoring_train=partial_train_loss, device='cuda', verbose=1, n_jobs=1 ) print('Train loss:', train_loss_values) print('Test score:', test_score_values) ``` 在这个例子中,我们定义了两个函数 `train_loss` 和 `test_score`。其中,`train_loss` 用于计算每一轮训练后的平均损失,`test_score` 用于评估模型在测试集上的准确率。我们通过 `partial` 函数将这两个函数转化为只需要传入数据集和模型对象的函数对象,并将它们作为 `scoring_train` 和 `scoring` 参数传给 `learning_curve` 函数。在 `learning_curve` 函数中,我们使用 `train_sizes` 参数来控制不同大小的训练集上的训练和评估,并使用 `n_jobs` 参数来并行计算。 最终,`learning_curve` 函数将返回训练集大小和对应的训练损失以及测试集大小和对应的评估指标,你可以将它们用于可视化学习曲线。

learning_curve函数可以得到train_loss吗

是的,`learning_curve`函数可以得到训练集的损失(train loss),并且可以根据训练过程中的训练集和验证集的损失变化绘制学习曲线。在使用`learning_curve`函数时,需要提供模型、优化器、损失函数、数据集、批次大小、训练周期数、学习率等参数,其中损失函数的定义应该包含对训练集损失的计算。例如,使用PyTorch框架,可以在损失函数中添加如下代码来计算训练集损失: ```python def loss_fn(outputs, labels): loss = nn.CrossEntropyLoss()(outputs, labels) train_loss = loss.item() # 计算训练集损失 return loss ``` 其中,`loss.item()`可以返回当前批次训练集的损失。
阅读全文

相关推荐

import tensorflow as tf import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler import matplotlib.pyplot as plt # 从Excel文件中读取数据 data = pd.read_excel('E:\学习\python\data2.xlsx', engine='openpyxl') input_data = data.iloc[:, :12].values #获取Excel文件中第1列到第12列的数据 output_data = data.iloc[:, 12:].values #获取Excel文件中第13列到最后一列的数据 # 数据归一化处理 scaler_input = MinMaxScaler() scaler_output = MinMaxScaler() input_data = scaler_input.fit_transform(input_data) output_data = scaler_output.fit_transform(output_data) # 划分训练集和验证集 X_train, X_val, y_train, y_val = train_test_split(input_data, output_data, test_size=0.1, random_state=42) # 定义神经网络模型 model = tf.keras.Sequential([ tf.keras.layers.Input(shape=(12,)), tf.keras.layers.Dense(10, activation=tf.keras.layers.LeakyReLU(alpha=0.1)), tf.keras.layers.Dense(10, activation=tf.keras.layers.LeakyReLU(alpha=0.1)), tf.keras.layers.Dense(10, activation=tf.keras.layers.LeakyReLU(alpha=0.1)), tf.keras.layers.Dense(8, activation='linear') ]) # 编译模型 model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.001), loss='mse') # 定义学习率衰减 def scheduler(epoch, lr): if epoch % 50 == 0 and epoch != 0: return lr * 0.1 else: return lr callback = tf.keras.callbacks.LearningRateScheduler(scheduler) # 训练模型 history = model.fit(X_train, y_train, validation_data=(X_val, y_val), epochs=200, batch_size=50, callbacks=[callback]) # 导出损失函数曲线 plt.plot(history.history['loss'], label='Training Loss') plt.plot(history.history['val_loss'], label='Validation Loss') plt.xlabel('Epoch') plt.ylabel('Loss') plt.legend() plt.savefig('loss_curve.png')

解释import tensorflow as tf from im_dataset import train_image, train_label, test_image, test_label from AlexNet8 import AlexNet8 from baseline import baseline from InceptionNet import Inception10 from Resnet18 import ResNet18 import os import matplotlib.pyplot as plt import argparse import numpy as np parse = argparse.ArgumentParser(description="CVAE model for generation of metamaterial") hyperparameter_set = parse.add_argument_group(title='HyperParameter Setting') dim_set = parse.add_argument_group(title='Dim setting') hyperparameter_set.add_argument("--num_epochs",type=int,default=200,help="Number of train epochs") hyperparameter_set.add_argument("--learning_rate",type=float,default=4e-3,help="learning rate") hyperparameter_set.add_argument("--image_size",type=int,default=16*16,help="vector size of image") hyperparameter_set.add_argument("--batch_size",type=int,default=16,help="batch size of database") dim_set.add_argument("--z_dim",type=int,default=20,help="dim of latent variable") dim_set.add_argument("--feature_dim",type=int,default=32,help="dim of feature vector") dim_set.add_argument("--phase_curve_dim",type=int,default=41,help="dim of phase curve vector") dim_set.add_argument("--image_dim",type=int,default=16,help="image size: [image_dim,image_dim,1]") args = parse.parse_args() def preprocess(x, y): x = tf.io.read_file(x) x = tf.image.decode_png(x, channels=1) x = tf.cast(x,dtype=tf.float32) /255. x1 = tf.concat([x, x], 0) x2 = tf.concat([x1, x1], 1) x = x - 0.5 y = tf.convert_to_tensor(y) y = tf.cast(y,dtype=tf.float32) return x2, y train_db = tf.data.Dataset.from_tensor_slices((train_image, train_label)) train_db = train_db.shuffle(100).map(preprocess).batch(args.batch_size) test_db = tf.data.Dataset.from_tensor_slices((test_image, test_label)) test_db = test_db.map(preprocess).batch(args.batch_size) model = ResNet18([2, 2, 2, 2]) model.build(input_shape=(args.batch_size, 32, 32, 1)) model.compile(optimizer = tf.keras.optimizers.Adam(lr = 1e-3), loss = tf.keras.losses.MSE, metrics = ['MSE']) checkpoint_save_path = "./checkpoint/InceptionNet_im_3/checkpoint.ckpt" if os.path.exists(checkpoint_save_path+'.index'): print('------------------load the model---------------------') model.load_weights(checkpoint_save_path) cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path,save_weights_only=True,save_best_only=True) history = model.fit(train_db, epochs=500, validation_data=test_db, validation_freq=1, callbacks=[cp_callback]) model.summary() acc = history.history['loss'] val_acc = history.history['val_loss'] plt.plot(acc, label='Training MSE') plt.plot(val_acc, label='Validation MSE') plt.title('Training and Validation MSE') plt.legend() plt.show()

最新推荐

recommend-type

Spring Cloud 全面学习案例集,含多种功能示例与教程.zip

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。
recommend-type

AudioStream 1.5.unitypackage

AudioStream 1.5.unitypackage
recommend-type

驾驭未来:Simulink中PMSM永磁同步电机控制深度解析

在现代工业自动化和电动汽车领域,永磁同步电机(PMSM)因其高效率、高性能和紧凑设计而备受青睐。本文将详细介绍如何在Simulink中实现PMSM的控制,包括矢量控制(FOC)策略的实现,以及必要的代码示例,旨在为工程师和研究者提供实用的指导。 一、PMSM控制概述 永磁同步电机(PMSM)以其高功率密度、高效率和优异的动态响应而广泛应用于工业和汽车领域。在Simulink中实现PMSM控制,通常采用矢量控制(Field-Oriented Control, FOC)策略,该策略通过磁场定向控制实现电机转矩和速度的精确控制。 二、PMSM数学模型与Simulink实现 PMSM的数学模型包括电压方程、磁链方程和转矩方程。在Simulink中,我们可以通过构建相应的模块来实现这些方程。 1. PMSM数学模型 电压方程: u d = R s i d − ω e L q i q + L d d i d d t + ω e ψ f u d ​ =Rsid−ω e ​ L q ​ iq+
recommend-type

Jupyter_B 站直播事件 webhook 和开播邮件提醒.zip

Jupyter-Notebook
recommend-type

合成控制法与收敛性分析资料最新集.zip

合成控制法与收敛性分析资料最新集.zip
recommend-type

高清艺术文字图标资源,PNG和ICO格式免费下载

资源摘要信息:"艺术文字图标下载" 1. 资源类型及格式:本资源为艺术文字图标下载,包含的图标格式有PNG和ICO两种。PNG格式的图标具有高度的透明度以及较好的压缩率,常用于网络图形设计,支持24位颜色和8位alpha透明度,是一种无损压缩的位图图形格式。ICO格式则是Windows操作系统中常见的图标文件格式,可以包含不同大小和颜色深度的图标,通常用于桌面图标和程序的快捷方式。 2. 图标尺寸:所下载的图标尺寸为128x128像素,这是一个标准的图标尺寸,适用于多种应用场景,包括网页设计、软件界面、图标库等。在设计上,128x128像素提供了足够的面积来展现细节,而大尺寸图标也可以方便地进行缩放以适应不同分辨率的显示需求。 3. 下载数量及内容:资源提供了12张艺术文字图标。这些图标可以用于个人项目或商业用途,具体使用时需查看艺术家或资源提供方的版权声明及使用许可。在设计上,艺术文字图标融合了艺术与文字的元素,通常具有一定的艺术风格和创意,使得图标不仅具备标识功能,同时也具有观赏价值。 4. 设计风格与用途:艺术文字图标往往具有独特的设计风格,可能包括手绘风格、抽象艺术风格、像素艺术风格等。它们可以用于各种项目中,如网站设计、移动应用、图标集、软件界面等。艺术文字图标集可以在视觉上增加内容的吸引力,为用户提供直观且富有美感的视觉体验。 5. 使用指南与版权说明:在使用这些艺术文字图标时,用户应当仔细阅读下载页面上的版权声明及使用指南,了解是否允许修改图标、是否可以用于商业用途等。一些资源提供方可能要求在使用图标时保留作者信息或者在产品中适当展示图标来源。未经允许使用图标可能会引起版权纠纷。 6. 压缩文件的提取:下载得到的资源为压缩文件,文件名称为“8068”,意味着用户需要将文件解压缩以获取里面的PNG和ICO格式图标。解压缩工具常见的有WinRAR、7-Zip等,用户可以使用这些工具来提取文件。 7. 具体应用场景:艺术文字图标下载可以广泛应用于网页设计中的按钮、信息图、广告、社交媒体图像等;在应用程序中可以作为启动图标、功能按钮、导航元素等。由于它们的尺寸较大且具有艺术性,因此也可以用于打印材料如宣传册、海报、名片等。 通过上述对艺术文字图标下载资源的详细解析,我们可以看到,这些图标不仅是简单的图形文件,它们集合了设计美学和实用功能,能够为各种数字产品和视觉传达带来创新和美感。在使用这些资源时,应遵循相应的版权规则,确保合法使用,同时也要注重在设计时根据项目需求对图标进行适当调整和优化,以获得最佳的视觉效果。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

DMA技术:绕过CPU实现高效数据传输

![DMA技术:绕过CPU实现高效数据传输](https://res.cloudinary.com/witspry/image/upload/witscad/public/content/courses/computer-architecture/dmac-functional-components.png) # 1. DMA技术概述 DMA(直接内存访问)技术是现代计算机架构中的关键组成部分,它允许外围设备直接与系统内存交换数据,而无需CPU的干预。这种方法极大地减少了CPU处理I/O操作的负担,并提高了数据传输效率。在本章中,我们将对DMA技术的基本概念、历史发展和应用领域进行概述,为读
recommend-type

SGM8701电压比较器如何在低功耗电池供电系统中实现高效率运作?

SGM8701电压比较器的超低功耗特性是其在电池供电系统中高效率运作的关键。其在1.4V电压下工作电流仅为300nA,这种低功耗水平极大地延长了电池的使用寿命,尤其适用于功耗敏感的物联网(IoT)设备,如远程传感器节点。SGM8701的低功耗设计得益于其优化的CMOS输入和内部电路,即使在电池供电的设备中也能提供持续且稳定的性能。 参考资源链接:[SGM8701:1.4V低功耗单通道电压比较器](https://wenku.csdn.net/doc/2g6edb5gf4?spm=1055.2569.3001.10343) 除此之外,SGM8701的宽电源电压范围支持从1.4V至5.5V的电
recommend-type

mui框架HTML5应用界面组件使用示例教程

资源摘要信息:"HTML5基本类模块V1.46例子(mui角标+按钮+信息框+进度条+表单演示)-易语言" 描述中的知识点: 1. HTML5基础知识:HTML5是最新一代的超文本标记语言,用于构建和呈现网页内容。它提供了丰富的功能,如本地存储、多媒体内容嵌入、离线应用支持等。HTML5的引入使得网页应用可以更加丰富和交互性更强。 2. mui框架:mui是一个轻量级的前端框架,主要用于开发移动应用。它基于HTML5和JavaScript构建,能够帮助开发者快速创建跨平台的移动应用界面。mui框架的使用可以使得开发者不必深入了解底层技术细节,就能够创建出美观且功能丰富的移动应用。 3. 角标+按钮+信息框+进度条+表单元素:在mui框架中,角标通常用于指示未读消息的数量,按钮用于触发事件或进行用户交互,信息框用于显示临时消息或确认对话框,进度条展示任务的完成进度,而表单则是收集用户输入信息的界面组件。这些都是Web开发中常见的界面元素,mui框架提供了一套易于使用和自定义的组件实现这些功能。 4. 易语言的使用:易语言是一种简化的编程语言,主要面向中文用户。它以中文作为编程语言关键字,降低了编程的学习门槛,使得编程更加亲民化。在这个例子中,易语言被用来演示mui框架的封装和使用,虽然描述中提到“如何封装成APP,那等我以后再说”,暗示了mui框架与移动应用打包的进一步知识,但当前内容聚焦于展示HTML5和mui框架结合使用来创建网页应用界面的实例。 5. 界面美化源码:文件的标签提到了“界面美化源码”,这说明文件中包含了用于美化界面的代码示例。这可能包括CSS样式表、JavaScript脚本或HTML结构的改进,目的是为了提高用户界面的吸引力和用户体验。 压缩包子文件的文件名称列表中的知识点: 1. mui表单演示.e:这部分文件可能包含了mui框架中的表单组件演示代码,展示了如何使用mui框架来构建和美化表单。表单通常包含输入字段、标签、按钮和其他控件,用于收集和提交用户数据。 2. mui角标+按钮+信息框演示.e:这部分文件可能展示了mui框架中如何实现角标、按钮和信息框组件,并进行相应的事件处理和样式定制。这些组件对于提升用户交互体验至关重要。 3. mui进度条演示.e:文件名表明该文件演示了mui框架中的进度条组件,该组件用于向用户展示操作或数据处理的进度。进度条组件可以增强用户对系统性能和响应时间的感知。 4. html5标准类1.46.ec:这个文件可能是核心的HTML5类库文件,其中包含了HTML5的基础结构和类定义。"1.46"表明这是特定版本的类库文件,而".ec"文件扩展名可能是易语言项目中的特定格式。 总结来说,这个资源摘要信息涉及到HTML5的前端开发、mui框架的界面元素实现和美化、易语言在Web开发中的应用,以及如何利用这些技术创建功能丰富的移动应用界面。通过这些文件和描述,可以学习到如何利用mui框架实现常见的Web界面元素,并通过易语言将这些界面元素封装成移动应用。