pytorch搭建lstm
时间: 2023-08-27 19:07:00 浏览: 90
在 PyTorch 中搭建 LSTM 模型的步骤如下:
1. 导入 PyTorch 库
```python
import torch
import torch.nn as nn
```
2. 定义 LSTM 模型类
```python
class LSTM(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, output_size):
super(LSTM, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
out, _ = self.lstm(x, (h0, c0))
out = self.fc(out[:, -1, :])
return out
```
3. 定义输入数据的维度和超参数
```python
input_size = 28
hidden_size = 128
num_layers = 2
output_size = 10
learning_rate = 0.01
num_epochs = 5
```
4. 加载数据集
```python
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)
```
5. 实例化模型和损失函数
```python
model = LSTM(input_size, hidden_size, num_layers, output_size).to(device)
criterion = nn.CrossEntropyLoss()
```
6. 定义优化器
```python
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
```
7. 训练模型
```python
total_step = len(train_loader)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images = images.reshape(-1, sequence_length, input_size).to(device)
labels = labels.to(device)
outputs = model(images)
loss = criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i+1) % 100 == 0:
print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
.format(epoch+1, num_epochs, i+1, total_step, loss.item()))
```
8. 测试模型
```python
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
images = images.reshape(-1, sequence_length, input_size).to(device)
labels = labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the model on the test images: {} %'.format(100 * correct / total))
```
这就是在 PyTorch 中搭建 LSTM 模型的基本步骤。
阅读全文