pytorch中搭建lstm网络模型
时间: 2023-10-29 21:06:06 浏览: 90
以下是一个简单的LSTM网络模型的搭建过程:
```python
import torch
import torch.nn as nn
class LSTMModel(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, output_size):
super(LSTMModel, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
# LSTM层
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
# 输出层
self.linear = nn.Linear(hidden_size, output_size)
def forward(self, x):
# 初始化隐状态和细胞状态
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
# 前向传播
out, _ = self.lstm(x, (h0, c0))
out = self.linear(out[:, -1, :])
return out
```
其中,`input_size`表示输入数据的特征数,`hidden_size`表示LSTM中隐状态的维度,`num_layers`表示LSTM中堆叠的层数,`output_size`表示输出的维度。在`__init__`函数中,我们首先调用`super`函数初始化父类,然后定义了LSTM层和输出层。在`forward`函数中,我们首先初始化隐状态和细胞状态,然后将输入数据`x`传入LSTM层中进行前向传播,最后将LSTM层的输出传入输出层中得到模型的预测结果。
阅读全文