首先,通过人工手动选取部分隐私相关词作为种子词,得到种子词列表;其次,利用BERT模型训练大量的微博用户文本语料和种子词列表中的一个种子词,获取词向量;然后,计算微博文本语料中每个中文词汇与已有种子词的余弦相似度,两个向量之间的余弦相似度越大说明它们关联度越高。最后,设置关联度阈值为0.85,语料中大于等于阈值0.85的词汇并且实际语义也是相近的才能被认为是相关隐私风险词,并与种子词一起纳入隐私词库中,词库达到一定规模后,过滤去重,形成最终的隐私词库。注意:我需要Tokenizer模型分词分的是中文,并不是分成单个字。帮我实现上述描述的代码,并且运行之后不要报错

时间: 2023-12-07 08:04:59 浏览: 31
以下是基于Python和Hugging Face Transformers库的代码实现: ``` from transformers import BertTokenizer, BertModel import numpy as np import pandas as pd import jieba # 加载BERT模型和tokenizer tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') model = BertModel.from_pretrained('bert-base-chinese', output_hidden_states=True) # 加载种子词列表 seed_words = ["身份证", "手机号码", "地址", "信用卡", "密码", "账号", "银行卡", "个人信息"] # 加载微博用户文本语料 data = pd.read_csv('weibo_data.csv') # 预处理微博用户文本语料 data['text'] = data['text'].apply(lambda x: jieba.lcut(x)) data['text'] = data['text'].apply(lambda x: ' '.join(x)) # 计算微博文本语料中每个中文词汇与已有种子词的余弦相似度,得到相关性矩阵 embeddings = [] for text in data['text']: inputs = tokenizer(text, return_tensors='pt', padding=True, truncation=True) with torch.no_grad(): outputs = model(**inputs) hidden_states = outputs[2] token_vecs = hidden_states[-2][0] embeddings.append(token_vecs.numpy()) embeddings = np.concatenate(embeddings, axis=0) seed_embeddings = [] for word in seed_words: inputs = tokenizer(word, return_tensors='pt') with torch.no_grad(): outputs = model(**inputs) hidden_states = outputs[2] token_vecs = hidden_states[-2][0] seed_embeddings.append(token_vecs.numpy()) seed_embeddings = np.concatenate(seed_embeddings, axis=0) cosine_sim = np.dot(embeddings, seed_embeddings.T) / (np.linalg.norm(embeddings, axis=1)[:, None] * np.linalg.norm(seed_embeddings, axis=1)) # 确定关联度阈值 threshold = 0.85 # 确定相关隐私风险词 related_words = [] for i, text in enumerate(data['text']): related_indices = np.argwhere(cosine_sim[i] >= threshold).flatten() related_words += [tokenizer.convert_ids_to_tokens(inputs['input_ids'][0, j].item()) for j in related_indices] # 过滤去重,形成最终的隐私词库 privacy_words = list(set([word for word in related_words if len(word) > 1])) print(privacy_words) ``` 上述代码中,我们首先加载了BERT模型和tokenizer,然后加载了种子词列表和微博用户文本语料。接着,我们对微博用户文本语料进行了预处理,使用tokenizer将文本转化为BERT模型所需的输入格式,并使用模型计算了微博文本语料中每个中文词汇与已有种子词的余弦相似度,得到相关性矩阵。然后,我们确定了关联度阈值,并根据阈值筛选出相关隐私风险词。最后,我们进行了去重处理,得到最终的隐私词库。 需要注意的是,上述代码中使用了jieba分词器对微博用户文本语料进行了分词处理,同时我们也在tokenizer中设置了`padding`和`truncation`参数,以确保输入的文本长度一致。如果你的微博用户文本语料已经分好词,则可以直接跳过分词处理步骤,将分好的词汇列表传递给tokenizer即可。

相关推荐

最新推荐

recommend-type

BERT预训练模型字向量提取工具–使用BERT编码句子

本工具直接读取BERT预训练模型,从中提取样本文件中所有使用到字向量,保存成向量文件,为后续模型提供embdding。 本工具直接读取预训练模型,不需要其它的依赖,同时把样本中所有 出现的字符对应的字向量全部提取,...
recommend-type

基于文本筛选和改进BERT的长文本方面级情感分析

该算法首先利用长短时记忆网络(LSTM)和注意力机制相结合的文本筛选网络(TFN)从长文本中直接筛选出与粗粒度方面相关的部分语句,然后将部分语句按次序进行组合,并结合细粒度方面输入至在BERT上增加注意力层的...
recommend-type

setuptools-41.0.0-py2.py3-none-any.whl

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

Google Cloud Storage(使用gsutil下载)

Google Cloud CLI安装包GoogleCloudSDKInstaller.exe
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依