对图像进行clahe自适应图像增强代码
时间: 2023-10-03 16:06:53 浏览: 122
下面是使用OpenCV库实现CLAHE自适应图像增强的Python代码示例:
```python
import cv2
# 读取图像
img = cv2.imread('image.jpg', 0)
# 创建CLAHE对象
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
# 应用CLAHE算法进行图像增强
img_clahe = clahe.apply(img)
# 显示原始图像和增强后的图像
cv2.imshow('Original Image', img)
cv2.imshow('CLAHE Image', img_clahe)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
在代码中,首先使用`cv2.imread()`函数读取需要增强的图像,然后创建CLAHE对象并设置参数,最后使用`apply()`方法应用CLAHE算法进行图像增强。最后使用`cv2.imshow()`函数显示原始图像和增强后的图像,并使用`cv2.waitKey()`和`cv2.destroyAllWindows()`函数等待用户按下任意键关闭窗口。
相关问题
CLAHE自适应调整阈值代码
以下是基于Python编写的CLAHE算法自适应调整阈值的代码示例:
```python
import cv2
def adaptive_clahe(image_path, clip_limit=2.0, tile_size=8):
# 读取图像
image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
# 创建CLAHE对象
clahe = cv2.createCLAHE(clipLimit=clip_limit, tileGridSize=(tile_size, tile_size))
# 自适应调整阈值
adaptive_threshold = cv2.adaptiveThreshold(image, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2)
# 应用CLAHE算法
clahe_image = clahe.apply(image)
# 返回处理后的图像
return clahe_image
```
其中,`image_path`参数表示图像文件的路径,`clip_limit`参数表示限制对比度的阈值,`tile_size`参数表示分块大小。在代码中,首先读取图像,然后创建CLAHE对象,并使用`cv2.adaptiveThreshold`函数自适应调整阈值。最后,将得到的阈值应用于CLAHE算法,生成增强后的图像,并返回其结果。
基于杜鹃搜索算法的CLAHE自适应阈值对比度增强算法代码
以下是基于杜鹃搜索算法的CLAHE自适应阈值对比度增强算法的示例代码:
```python
import cv2
import numpy as np
import math
# 定义CLAHE算法
def clahe(image, clip_limit=2.0, grid_size=(8, 8)):
clahe = cv2.createCLAHE(clipLimit=clip_limit, tileGridSize=grid_size)
return clahe.apply(image)
# 定义杜鹃搜索算法
def cuckoo_search(fit_func, dim, lb, ub, pa=0.25, gen=100):
pop_size = 50
nest = np.random.rand(pop_size, dim) * (ub - lb) + lb
fitness = np.zeros(pop_size)
best_nest_index = np.zeros(gen)
best_nest = np.zeros((gen, dim))
fmin = fit_func(nest[0, :])
best_nest[0, :] = nest[0, :]
for i in range(pop_size):
fitness[i] = fit_func(nest[i, :])
if fitness[i] < fmin:
fmin = fitness[i]
best_nest[0, :] = nest[i, :]
for it in range(1, gen):
new_nest = np.zeros((pop_size, dim))
for i in range(pop_size):
u = np.random.rand(dim) < pa
step_size = np.random.rand() * (nest[np.random.randint(pop_size), :] - nest[np.random.randint(pop_size), :])
new_nest[i, :] = nest[i, :] + step_size * u
for i in range(pop_size):
for j in range(dim):
if new_nest[i, j] < lb:
new_nest[i, j] = lb
if new_nest[i, j] > ub:
new_nest[i, j] = ub
for i in range(pop_size):
fitness_new = fit_func(new_nest[i, :])
if fitness_new < fitness[i]:
fitness[i] = fitness_new
nest[i, :] = new_nest[i, :]
if fitness_new < fmin:
fmin = fitness_new
best_nest[it, :] = new_nest[i, :]
best_nest_index[it] = fmin
return best_nest, best_nest_index
# 定义自适应阈值CLAHE算法
def adaptive_clahe(image, clip_limit=2.0, grid_size=(8, 8), search_gen=50, search_pa=0.25):
# 定义适应度函数
def fitness_func(threshold):
img = np.array(image)
img[img < threshold] = 0
img[img >= threshold] = 255
img = clahe(img, clip_limit=clip_limit, grid_size=grid_size)
mse = np.mean((img - image) ** 2)
return mse
# 搜索最佳阈值
lb = 0
ub = 255
dim = 1
best_nest, best_nest_index = cuckoo_search(fitness_func, dim, lb, ub, pa=search_pa, gen=search_gen)
threshold = best_nest[-1, 0]
# 对图像进行CLAHE处理
img = np.array(image)
img[img < threshold] = 0
img[img >= threshold] = 255
img = clahe(img, clip_limit=clip_limit, grid_size=grid_size)
return img
# 测试代码
if __name__ == '__main__':
img = cv2.imread('lena.png', cv2.IMREAD_GRAYSCALE)
img_adaptive_clahe = adaptive_clahe(img, clip_limit=2.0, grid_size=(8, 8), search_gen=50, search_pa=0.25)
cv2.imshow('Original Image', img)
cv2.imshow('Adaptive CLAHE Image', img_adaptive_clahe)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
该代码使用了numpy和OpenCV库,首先定义了CLAHE算法和杜鹃搜索算法的函数,然后定义了自适应阈值CLAHE算法的函数,最后进行测试并显示结果。
阅读全文