感知器的三个算法用Python呈现
时间: 2023-11-19 07:30:19 浏览: 83
python 模式识别 感知器.zip
1. 感知器学习算法
```python
# 定义感知器函数
def perceptron(weights, bias, input):
dot_product = sum(weight * i for weight, i in zip(weights, input)) + bias
return 1 if dot_product > 0 else 0
# 定义感知器学习算法函数
def perceptron_learning_algorithm(data, labels, learning_rate):
# 初始化权重和偏置
weights = [0] * len(data[0])
bias = 0
# 迭代更新权重和偏置
while True:
error_count = 0
for input, label in zip(data, labels):
prediction = perceptron(weights, bias, input)
error = label - prediction
if error != 0:
error_count += 1
for i in range(len(weights)):
weights[i] += learning_rate * error * input[i]
bias += learning_rate * error
if error_count == 0:
break
# 返回训练好的模型
return weights, bias
```
2. Delta规则算法
```python
# 定义 Delta 规则函数
def delta_rule(weights, bias, input, label, learning_rate):
y = sum(weight * i for weight, i in zip(weights, input)) + bias
error = label - y
for i in range(len(weights)):
weights[i] += learning_rate * error * input[i]
bias += learning_rate * error
return weights, bias
```
3. Hebbian算法
```python
# 定义 Hebbian 算法函数
def hebbian_learning(data):
# 初始化权重和偏置
weights = [0] * len(data[0])
bias = 0
# 迭代更新权重和偏置
for input in data:
for i in range(len(weights)):
weights[i] += input[i] * input[i]
bias += sum(input)
# 返回训练好的模型
return weights, bias
```
阅读全文