BP神经网络实现手写数字识别MATLAB程序
时间: 2023-11-05 15:54:51 浏览: 375
以下是一个基于BP神经网络实现手写数字识别的MATLAB程序示例:
首先,载入手写数字图片数据集(MNIST),可以通过以下代码实现:
```matlab
load('mnist.mat'); % 载入MNIST数据集
train_images = double(train_images)/255; % 归一化训练集
test_images = double(test_images)/255; % 归一化测试集
num_train = size(train_labels,1); % 训练集大小
num_test = size(test_labels,1); % 测试集大小
```
接着,定义BP神经网络的参数,包括输入层、隐藏层和输出层的节点数、学习率、迭代次数等等:
```matlab
input_layer_size = 784; % 输入层节点数
hidden_layer_size = 25; % 隐藏层节点数
output_layer_size = 10; % 输出层节点数
learning_rate = 0.1; % 学习率
num_iter = 1000; % 迭代次数
```
然后,初始化BP神经网络的权重和偏置参数:
```matlab
% 初始化权重和偏置参数
W1 = randn(hidden_layer_size,input_layer_size); % 输入层到隐藏层权重
b1 = randn(hidden_layer_size,1); % 隐藏层偏置
W2 = randn(output_layer_size,hidden_layer_size); % 隐藏层到输出层权重
b2 = randn(output_layer_size,1); % 输出层偏置
```
接下来,开始训练BP神经网络:
```matlab
for iter = 1:num_iter % 迭代训练
% 随机选择一个样本
i = randi(num_train);
x = train_images(i,:)';
y = zeros(output_layer_size,1);
y(train_labels(i)+1) = 1; % 将标签转化为one-hot编码
% 前向传播计算输出
z1 = W1*x + b1;
a1 = sigmoid(z1);
z2 = W2*a1 + b2;
a2 = softmax(z2);
% 计算误差
loss = -sum(y.*log(a2));
% 反向传播更新参数
delta2 = a2 - y;
delta1 = (W2'*delta2).*sigmoid_grad(z1);
W2 = W2 - learning_rate*delta2*a1';
b2 = b2 - learning_rate*delta2;
W1 = W1 - learning_rate*delta1*x';
b1 = b1 - learning_rate*delta1;
end
```
最后,进行测试并计算分类准确率:
```matlab
% 测试BP神经网络
num_correct = 0;
for i = 1:num_test
x = test_images(i,:)';
y = test_labels(i);
z1 = W1*x + b1;
a1 = sigmoid(z1);
z2 = W2*a1 + b2;
a2 = softmax(z2);
[~,pred] = max(a2);
if pred-1 == y % 将one-hot编码转化为标签
num_correct = num_correct + 1;
end
end
accuracy = num_correct/num_test;
fprintf('分类准确率为 %.2f%%\n',accuracy*100);
```
完整的BP神经网络实现手写数字识别的MATLAB程序示例可以参考以下链接:https://github.com/chenzhao0426/BP-Neural-Network-for-MNIST-Handwritten-Digit-Recognition-in-MATLAB。
阅读全文