我需要一个使用harris算法实现两幅图片完成全景图像拼接的代码
时间: 2023-12-14 18:36:20 浏览: 82
一种全景图像拼接算法的实现
4星 · 用户满意度95%
好的,下面是使用Harris算法实现两幅图片完成全景图像拼接的Python代码:
```python
import cv2
import numpy as np
# 读取两幅图片
img_left = cv2.imread('left.jpg')
img_right = cv2.imread('right.jpg')
# 将图片转为灰度图
gray_left = cv2.cvtColor(img_left, cv2.COLOR_BGR2GRAY)
gray_right = cv2.cvtColor(img_right, cv2.COLOR_BGR2GRAY)
# 使用Harris算法检测特征点
harris_left = cv2.cornerHarris(gray_left, 2, 3, 0.04)
harris_right = cv2.cornerHarris(gray_right, 2, 3, 0.04)
# 使用Shi-Tomasi算法选择最佳的特征点
corners_left = cv2.goodFeaturesToTrack(gray_left, 100, 0.01, 10)
corners_right = cv2.goodFeaturesToTrack(gray_right, 100, 0.01, 10)
# 计算特征点的描述符
sift = cv2.SIFT_create()
keypoints_left, descriptors_left = sift.compute(gray_left, corners_left)
keypoints_right, descriptors_right = sift.compute(gray_right, corners_right)
# 使用FLANN算法匹配特征点
FLANN_INDEX_KDTREE = 1
index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
search_params = dict(checks=50)
flann = cv2.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(descriptors_left, descriptors_right, k=2)
# 根据最佳匹配点计算变换矩阵
good_matches = []
for m, n in matches:
if m.distance < 0.7 * n.distance:
good_matches.append(m)
src_pts = np.float32([keypoints_left[m.queryIdx].pt for m in good_matches]).reshape(-1, 1, 2)
dst_pts = np.float32([keypoints_right[m.trainIdx].pt for m in good_matches]).reshape(-1, 1, 2)
M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
# 将两幅图片拼接成全景图像
result = cv2.warpPerspective(img_left, M, (img_left.shape[1] + img_right.shape[1], img_left.shape[0]))
result[0:img_right.shape[0], img_left.shape[1]:img_left.shape[1] + img_right.shape[1]] = img_right
# 显示全景图像
cv2.imshow('Panorama', result)
cv2.waitKey()
cv2.destroyAllWindows()
```
你需要将代码中的 `left.jpg` 和 `right.jpg` 替换成你自己的图片路径。
阅读全文