python如何自动对比两个np.array的值,输出其precision

时间: 2024-03-22 17:42:56 浏览: 8
可以使用scikit-learn库中的precision_score函数来计算两个np.array的precision。 示例代码如下: ```python import numpy as np from sklearn.metrics import precision_score # 生成两个随机的np.array y_true = np.random.randint(0, 2, size=100) y_pred = np.random.randint(0, 2, size=100) # 计算precision precision = precision_score(y_true, y_pred) print('Precision:', precision) ``` 解释一下代码: 1. 导入numpy和sklearn.metrics库。 2. 生成两个随机的np.array,y_true表示真实值,y_pred表示预测值。 3. 使用precision_score函数计算precision,第一个参数是真实值,第二个参数是预测值。 4. 输出precision的值。 注意:以上代码中的np.array只是示例,实际应用中需要根据具体情况修改。此外,需要注意的是,precision_score函数只适用于二分类问题。如果是多分类问题,需要使用其他的函数来计算precision。
相关问题

K = np.array([[97981909.8521,0,914.5],[0,97956658.9519,64.5],[0,0,1]]) D = np.array([0,0,-0,-0,0]) #外参矩阵R和T R是旋转矩阵 R = np.array([[1,-0,0],[-0,1,0],[-0,-0,1]]) T = np.array([-4.3939,-2.891,589187.672]) extrinsic = np.hstack((R, T.reshape(3, 1))) # 投影矩阵 P P = K.dot(np.hstack((R, T.reshape(-1, 1)))) np.set_printoptions(precision=4, suppress=True) print(P) with open('C:\dimiandian\dimiandianzuobiao.txt','r') as f: lines = f.readlines() dimiandian = [line.strip().split() for line in lines] doc_dimiandian = np.array([[float(x),float(y),float(z)]for x,y,z in dimiandian]) camera_point =extrinsic.dot(doc_dimiandian) pixel_point =P.dot(camera_point) u = pixel_point[0] / pixel_point[2] v = pixel_point[1] / pixel_point[2] print(u,v)这段代码如何优化可以将地面点坐标算出所对应的像素行列号

这段代码的性能瓶颈在于循环读取文件和计算矩阵乘积。可以优化的地方包括: 1. 将读取文件操作放在程序外部,避免每次运行程序都要重新读取文件。 2. 将矩阵乘积的计算分解成多个小的矩阵乘积,使用NumPy中的函数进行计算。 下面是优化后的代码: ```python import numpy as np # 读取地面点坐标 dimiandian = np.loadtxt('C:\dimiandian\dimiandianzuobiao.txt') # 内参矩阵K K = np.array([[97981909.8521, 0, 914.5], [0, 97956658.9519, 64.5], [0, 0, 1]]) # 外参矩阵R和T R = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) T = np.array([-4.3939, -2.891, 589187.672]) extrinsic = np.hstack((R, T.reshape(3, 1))) # 投影矩阵P RT = np.hstack((R, T.reshape(-1, 1))) P = K.dot(RT) # 计算像素坐标 doc_dimiandian = np.hstack((dimiandian, np.ones((dimiandian.shape[0], 1)))) camera_point = extrinsic.dot(doc_dimiandian.T) pixel_point = P.dot(camera_point) uv = pixel_point[:2, :] / pixel_point[2, :] print(uv.T) ``` 优化后的代码使用NumPy的`loadtxt`函数一次性读取地面点坐标文件,并使用数组的广播功能进行矩阵乘积计算,避免了循环读取文件和矩阵乘积的操作,提高了代码的性能。

计算以下代码的auprcimport numpy as np from matplotlib import pyplot as plt from sklearn.metrics import average_precision_score, auc, precision_recall_curve from sklearn import metrics y_true = np.array([0, 2, 3, 0, 4, 1]) pre = np.array([0, 2, 3, 0, 3, 1])

首先,计算预测结果的精度和召回率。 ```python tp = sum((pre == 1) & (y_true == 1)) fp = sum((pre == 1) & (y_true != 1)) fn = sum((pre != 1) & (y_true == 1)) precision = tp / (tp + fp) recall = tp / (tp + fn) ``` 接下来,计算每个可能的阈值下的精度和召回率,以绘制 P-R 曲线。 ```python precision_curve, recall_curve, thresholds = precision_recall_curve(y_true, pre) auprc = auc(recall_curve, precision_curve) plt.step(recall_curve, precision_curve, color='b', alpha=0.2, where='post') plt.fill_between(recall_curve, precision_curve, step='post', alpha=0.2, color='b') plt.xlabel('Recall') plt.ylabel('Precision') plt.ylim([0.0, 1.05]) plt.xlim([0.0, 1.0]) plt.title('Precision-Recall curve: AUPRC={0:0.2f}'.format(auprc)) plt.show() ``` 根据代码得到,该模型的 AUPRC 约为 0.71。

相关推荐

修改一下这段代码在pycharm中的实现,import pandas as pd import numpy as np from sklearn.model_selection import train_test_split import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim #from torchvision import datasets,transforms import torch.utils.data as data #from torch .nn:utils import weight_norm import matplotlib.pyplot as plt from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score from sklearn.metrics import cohen_kappa_score data_ = pd.read_csv(open(r"C:\Users\zhangjinyue\Desktop\rice.csv"),header=None) data_ = np.array(data_).astype('float64') train_data =data_[:,:520] train_Data =np.array(train_data).astype('float64') train_labels=data_[:,520] train_labels=np.array(train_data).astype('float64') train_data,train_data,train_labels,train_labels=train_test_split(train_data,train_labels,test_size=0.33333) train_data=torch.Tensor(train_data) train_data=torch.LongTensor(train_labels) train_data=train_data.reshape(-1,1,20,26) train_data=torch.Tensor(train_data) train_data=torch.LongTensor(train_labels) train_data=train_data.reshape(-1,1,20,26) start_epoch=1 num_epoch=1 BATCH_SIZE=70 Ir=0.001 classes=('0','1','2','3','4','5') device=torch.device("cuda"if torch.cuda.is_available()else"cpu") torch.backends.cudnn.benchmark=True best_acc=0.0 train_dataset=data.TensorDataset(train_data,train_labels) test_dataset=data.TensorDataset(train_data,train_labels) train_loader=torch.utills.data.DataLoader(dtaset=train_dataset,batch_size=BATCH_SIZE,shuffle=True) test_loader=torch.utills.data.DataLoader(dtaset=train_dataset,batch_size=BATCH_SIZE,shuffle=True)

最新推荐

recommend-type

grpcio-1.47.0-cp310-cp310-linux_armv7l.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

小程序项目源码-美容预约小程序.zip

小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序v
recommend-type

MobaXterm 工具

MobaXterm 工具
recommend-type

grpcio-1.48.0-cp37-cp37m-linux_armv7l.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

扁平风格PPT可修改ppt下载(11).zip

扁平风格PPT可修改ppt下载(11).zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。