二元非线性函数的最大值点pso算法MATLAB

时间: 2024-04-29 19:22:51 浏览: 18
以下是一个使用PSO算法找到二元非线性函数最大值点的MATLAB代码示例: ``` % 二元非线性函数 f = @(x) -((x(1)^2 + x(2)^2)^0.25 * (sin(50*(x(1)^2 + x(2)^2)^0.1)^2 + 1)); % 定义PSO算法参数 nVar = 2; % 变量个数 nPop = 50; % 粒子个数 maxIter = 100; % 迭代次数 w = 1; % 惯性权重 wDamp = 0.99; % 惯性权重阻尼因子 c1 = 2; % 个体加速度系数 c2 = 2; % 全局加速度系数 vMax = 0.2*(10-(-10)); % 粒子速度最大值 vMin = -vMax; % 粒子速度最小值 % 初始化粒子位置和速度 emptyParticle.Position = []; emptyParticle.Velocity = []; emptyParticle.Cost = []; emptyParticle.Best.Position = []; emptyParticle.Best.Cost = []; particles = repmat(emptyParticle, nPop, 1); globalBest.Cost = -inf; for i = 1:nPop particles(i).Position = unifrnd(-10, 10, [1, nVar]); particles(i).Velocity = zeros([1, nVar]); particles(i).Cost = f(particles(i).Position); particles(i).Best.Position = particles(i).Position; particles(i).Best.Cost = particles(i).Cost; if particles(i).Best.Cost > globalBest.Cost globalBest = particles(i).Best; end end % 开始迭代 for iter = 1:maxIter for i = 1:nPop % 更新粒子速度 particles(i).Velocity = w*particles(i).Velocity + c1*rand([1, nVar]).*(particles(i).Best.Position - particles(i).Position) + c2*rand([1, nVar]).*(globalBest.Position - particles(i).Position); % 限制粒子速度范围 particles(i).Velocity = max(particles(i).Velocity, vMin); particles(i).Velocity = min(particles(i).Velocity, vMax); % 更新粒子位置 particles(i).Position = particles(i).Position + particles(i).Velocity; % 限制粒子位置范围 particles(i).Position = max(particles(i).Position, -10); particles(i).Position = min(particles(i).Position, 10); % 计算粒子成本函数 particles(i).Cost = f(particles(i).Position); % 更新个体最优解 if particles(i).Cost > particles(i).Best.Cost particles(i).Best.Position = particles(i).Position; particles(i).Best.Cost = particles(i).Cost; % 更新全局最优解 if particles(i).Best.Cost > globalBest.Cost globalBest = particles(i).Best; end end end % 输出当前迭代结果 disp(['Iteration ' num2str(iter) ': Best Cost = ' num2str(-globalBest.Cost)]); % 更新惯性权重 w = w*wDamp; end % 输出最终结果 disp('Final Result:'); disp(['Best Position = (' num2str(globalBest.Position) ')']); disp(['Best Cost = ' num2str(-globalBest.Cost)]); ```

相关推荐

最新推荐

recommend-type

利用python实现PSO算法优化二元函数

总结起来,这段代码演示了如何使用Python实现PSO算法来优化二元函数,通过设置粒子群参数、初始化种群、更新规则以及目标函数,逐步接近全局最优解。通过这种方式,我们可以解决各种复杂的优化问题,尤其是那些传统...
recommend-type

原始PSO算法matlab程序

"原始PSO算法matlab程序" PSO 算法概述 PSO(Particle Swarm Optimization,粒子群优化)算法是一种基于群体智能的优化算法,通过模拟鸟类觅食行为,寻找最优解。该算法具有全局性、并行性和高效性,广泛应用于...
recommend-type

基于PSO-BP 神经网络的短期负荷预测算法

其次,介绍BP神经网络基本结构,并针对BP神经网络容易陷入局部极小值的缺点,采用PSO算法确定网络训练初始权值。然后,设计一种基于PSO-BP神经网络的短期负荷预测算法,包括预滤波、训练样本集建立、神经网络输入/...
recommend-type

Python编程实现粒子群算法(PSO)详解

主要介绍了Python编程实现粒子群算法(PSO)详解,涉及粒子群算法的原理,过程,以及实现代码示例,具有一定参考价值,需要的朋友可以了解下。
recommend-type

Rosenbrock函数优化问题.docx

文档中主要是基于粒子群优化算法的Rosenbrock函数优化问题的研究,本文分析了粒子群优化算法的原理及算法流程,对算法参数的选择做了详细的研究,并基于Java语言开发了粒子群算法的模拟程序,实现求解Rosenbrock函数最...
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。