matlab实现背景减除法代码
时间: 2023-10-26 10:04:20 浏览: 86
以下是一种基于高斯混合模型的背景减除法的Matlab代码:
```matlab
% 读取视频文件
video_file = 'video.avi';
video = VideoReader(video_file);
% 初始化模型参数
num_gaussians = 5; % 高斯分量数
alpha = 0.05; % 学习率
threshold = 0.25; % 阈值
min_area = 100; % 最小轮廓面积
max_area = 5000; % 最大轮廓面积
% 初始化背景模型
background = zeros(video.Height, video.Width, num_gaussians);
weights = ones(1, num_gaussians) / num_gaussians;
means = zeros(video.Height, video.Width, num_gaussians);
variances = ones(video.Height, video.Width, num_gaussians);
% 遍历视频帧
while hasFrame(video)
% 读取当前帧
frame = readFrame(video);
% 转换为灰度图像
gray_frame = rgb2gray(frame);
% 初始化前景掩码
foreground_mask = zeros(size(gray_frame));
% 更新背景模型
for i = 1:num_gaussians
% 计算当前高斯分量的权重、均值和方差
weight = weights(i);
mean = means(:,:,i);
variance = variances(:,:,i);
% 计算像素与当前高斯分量之间的距离
distance = abs(double(gray_frame) - mean);
% 判断像素是否属于背景
is_background = (distance <= threshold * sqrt(variance));
% 更新权重、均值和方差
weights(i) = (1 - alpha) * weight + alpha * is_background;
means(:,:,i) = (1 - alpha) * mean + alpha * double(gray_frame) .* is_background;
variances(:,:,i) = (1 - alpha) * variance + alpha * (double(gray_frame) - mean).^2 .* is_background;
end
% 计算前景掩码
for i = 1:size(gray_frame, 1)
for j = 1:size(gray_frame, 2)
% 计算像素与所有高斯分量之间的距离
distance = abs(double(gray_frame(i,j)) - means(i,j,:));
% 判断像素是否属于前景
if sum(distance <= threshold * sqrt(variances(i,j,:))) == 0
foreground_mask(i,j) = 255;
end
end
end
% 去除小区域和大区域
foreground_mask = bwareaopen(foreground_mask, min_area);
foreground_mask = bwareaopen(foreground_mask, max_area);
% 显示前景掩码和原始帧
imshowpair(foreground_mask, frame, 'montage');
end
```
该代码首先读取视频文件,然后初始化高斯混合模型的参数和背景模型。接着遍历视频帧,并在每一帧中更新背景模型。然后,计算前景掩码,并去除小区域和大区域。最后,将前景掩码和原始帧显示在一起。
阅读全文