emd python代码

时间: 2023-07-02 19:23:18 浏览: 56
以下是Python中使用emd库计算EMD(Earth Mover's Distance)的示例代码: ```python from pyemd import emd import numpy as np # 定义两个分布 P = np.array([0.2, 0.3, 0.5]) Q = np.array([0.1, 0.6, 0.3]) # 定义两个距离矩阵 C = np.array([[0, 1, 2], [1, 0, 1], [2, 1, 0]]) D = np.array([[5, 2, 1], [2, 4, 2], [1, 2, 5]]) # 计算EMD emd_dist = emd(P, Q, C) emd_dist_with_flow = emd(P, Q, C, D) print("EMD distance: ", emd_dist) print("EMD distance with flow: ", emd_dist_with_flow) ``` 在上面的代码中,我们首先使用numpy数组定义了两个分布P和Q,然后使用numpy数组定义了两个距离矩阵C和D。最后,我们使用emd函数计算了两个分布之间的EMD距离,并将结果打印出来。如果您想计算EMD距离和流,则可以传递距离矩阵D作为第四个参数。
相关问题

EMD降噪python代码

以下是一个简单的EMD降噪Python代码示例: ``` import numpy as np import matplotlib.pyplot as plt from PyEMD import EMD # 生成信号 t = np.linspace(0, 1, 1000) x = np.sin(2*np.pi*5*t) + 0.2*np.sin(2*np.pi*20*t) # EMD降噪 emd = EMD() IMFs = emd(x) residual = IMFs[-1] clean_signal = x - residual # 绘制结果 plt.subplot(2, 1, 1) plt.plot(t, x) plt.title('Original Signal') plt.subplot(2, 1, 2) plt.plot(t, clean_signal) plt.title('Clean Signal') plt.tight_layout() plt.show() ``` 这个代码示例使用PyEMD库中的EMD类来实现EMD降噪。首先,我们生成一个包含5Hz和20Hz正弦波的信号。然后,我们使用EMD类将信号分解为一组内在模态函数(IMFs)。最后,我们从IMFs中获取残差,并将其从原始信号中减去以获得降噪信号。 请注意,这只是一个简单的示例,可能需要进行更多的调整和优化,以适用于更复杂的信号和降噪任务。

EMD分解python代码

EMD(Earth Mover's Distance)是一种衡量两个概率分布相似度的方法。其核心思想是将一个分布通过一系列步骤转化为另一个分布,每个步骤都有一个成本,最终计算所有步骤的成本之和作为两个分布的距离。 下面是使用Python实现EMD分解的代码: ```python import numpy as np def emd(distribution1, distribution2, cost_matrix): # 计算两个分布的累积分布函数 cdf1 = np.cumsum(distribution1) cdf2 = np.cumsum(distribution2) # 初始化一个全零的流量矩阵 flow = np.zeros(cost_matrix.shape) # 当前分布的累积质量和 mass1 = 0 mass2 = 0 # 遍历所有的成本矩阵元素 for i in range(cost_matrix.shape[0]): for j in range(cost_matrix.shape[1]): # 如果已经有流量了,跳过 if flow[i,j] > 0: continue # 计算从i到j的最小成本路径 path_cost, path = find_path(cost_matrix, flow, cdf1, cdf2, i, j) # 计算沿该路径的最大可用流量 max_flow = min(distribution1[path[0]] - mass1, distribution2[path[-1]] - mass2) # 在路径上增加流量 for k in range(len(path)-1): flow[path[k], path[k+1]] += max_flow # 更新累积质量和 mass1 += max_flow mass2 += max_flow # 如果已经匹配完毕,跳出循环 if mass1 == np.sum(distribution1) and mass2 == np.sum(distribution2): break # 计算总成本 total_cost = np.sum(flow * cost_matrix) return total_cost, flow def find_path(cost_matrix, flow, cdf1, cdf2, i, j): # 计算从i到j的路径成本 path_cost = cost_matrix[i,j] + cdf1[i] - cdf1[j] - cdf2[j] + cdf2[i] # 如果路径成本为0,说明已经达到最优解 if path_cost == 0: return 0, [i, j] # 初始化一个队列,用于广度优先搜索 queue = [(i, j)] # 初始化一组空间,用于记录路径 path_set = {(i, j): []} # 开始广度优先搜索 while len(queue) > 0: # 弹出队列中的第一个元素 curr = queue.pop(0) # 遍历所有可能的下一步 for next_node in get_next_nodes(curr, cost_matrix.shape[0], cost_matrix.shape[1]): # 如果没有增广路,跳过 if flow[next_node] >= 1: continue # 计算到下一个节点的路径成本 next_cost = cost_matrix[curr] + cdf1[curr[0]] - cdf1[next_node[0]] - cdf2[next_node[1]] + cdf2[curr[1]] # 如果路径成本相等,将节点加入队列中 if next_cost == path_cost: queue.append(next_node) path_set[next_node] = path_set[curr] + [next_node] # 返回最小成本路径及其成本 return path_cost, path_set[(i, j)] def get_next_nodes(node, n_rows, n_cols): # 计算下一个节点可能的坐标 next_nodes = [] if node[0] < n_rows - 1: next_nodes.append((node[0]+1, node[1])) if node[0] > 0: next_nodes.append((node[0]-1, node[1])) if node[1] < n_cols - 1: next_nodes.append((node[0], node[1]+1)) if node[1] > 0: next_nodes.append((node[0], node[1]-1)) return next_nodes ``` 该代码实现了EMD分解算法的核心逻辑。其中,emd函数接受两个分布和一个成本矩阵作为输入,计算两个分布之间的EMD距离和最优的流量矩阵。主要步骤包括计算累积分布函数、初始化流量矩阵、遍历成本矩阵、查找最小成本路径、更新流量矩阵、计算总成本等。find_path函数实现了广度优先搜索查找最小成本路径的逻辑,get_next_nodes函数计算一个节点可能的下一步坐标。

相关推荐

最新推荐

recommend-type

node-v7.7.2-linux-x86.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

如何用python编写api接口

在Python中编写API接口可以使用多种框架,其中比较流行的有Flask和Django。这里以Flask框架为例,简单介绍如何编写API接口。 1. 安装Flask框架 使用pip命令安装Flask框架: ``` pip install flask ``` 2. 编写API接口 创建一个Python文件,例如app.py,编写以下代码: ```python from flask import Flask, jsonify app = Flask(__name__) @app.route('/api/hello', methods=['GET']) def hello():
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

matlab 将加载的数据转变为矩阵

在 MATLAB 中,可以使用 `load` 函数将数据加载到工作区中,然后将其转换为矩阵。 例如,假设我们有一个名为 `data.txt` 的文本文件,其中包含以下内容: ``` 1 2 3 4 5 6 7 8 9 ``` 我们可以使用以下代码将其加载并转换为矩阵: ``` data = load('data.txt'); matrix = reshape(data, [3, 3]); ``` `load` 函数将文件中的数据加载到名为 `data` 的变量中,该变量是一个向量。我们可以使用 `reshape` 函数将其转换为一个 3x3 的矩阵。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。