# 读取Excel文件 data = pd.read_excel('./处理过的训练集/984151.xlsx') # 提取第一列第二行以后的数据 samples = data.iloc[1:, 0].tolist() # 假设数据共有N个点,采样周期为0.25秒 N = len(samples) t = np.arange(N) * 0.25 #组合时间序列和采样值 data = np.column_stack((t, samples))要求把这组数据变为离散型
时间: 2024-02-25 20:53:59 浏览: 70
如果你想将这个二维矩阵变为离散的数据,可以对采样数据进行离散化处理,将连续的数值转化为离散的类别。离散化可以使用上面提到的等宽离散化、等频离散化或聚类离散化等方法。
下面是一个使用等宽离散化的示例代码:
``` python
import numpy as np
import pandas as pd
# 读取Excel文件
data = pd.read_excel('./处理过的训练集/984151.xlsx')
# 提取第一列第二行以后的数据
samples = data.iloc[1:, 0].tolist()
# 将采样数据等宽离散化为10个类别
labels = pd.cut(samples, bins=10, labels=False)
# 组合时间序列和离散化后的采样数据
N = len(samples)
t = np.arange(N) * 0.25
data = np.column_stack((t, labels))
print(data[:10]) # 打印前10行数据
```
上述代码中,使用pd.cut()函数对采样数据进行等宽离散化,将采样数据分为10个类别,并将每个类别用一个整数标识。然后将离散化后的采样数据和时间序列组合成一个二维矩阵。最终得到的data是一个二维矩阵,第一列是时间序列,第二列是离散化后的采样数据。
相关问题
import pandas as pd# 读取Excel文件df = pd.read_excel('data.xlsx')# 分组统计计数counts = df.groupby('Category')['Value'].count()# 将计数结果写入Excel文件counts.to_excel('counts.xlsx')怎么使分组统计计数降序排序
可以使用`sort_values()`函数对`counts`进行降序排序,然后再将结果写入Excel文件。修改代码如下:
```python
import pandas as pd
# 读取Excel文件
df = pd.read_excel('data.xlsx')
# 分组统计计数并进行降序排序
counts = df.groupby('Category')['Value'].count().sort_values(ascending=False)
# 将计数结果写入Excel文件
counts.to_excel('counts.xlsx')
```
这样就可以按照计数数量的降序对分组统计计数结果进行排序了。
import pandas as pd from sklearn.linear_model import LinearRegression # 读取 Excel 文件 data = pd.read_excel('D://数据1.xlsx', sheet_name='4') # 把数据分成输入和输出 X = data.iloc[:, 0:5].values y = data.iloc[:, 0:5].values # 创建线性回归模型 model = LinearRegression() # 使用模型进行预测 y_pred = model.predict(X) # 拟合模型 model.fit(X, y) # 预测结果 y_pred = model.predict(X)修改错误
在这段代码中,`X` 与 `y` 的赋值存在错误,应该将 `y` 的赋值改为 `data.iloc[:, 5].values`,即选取 Excel 文件中第 6 列数据作为输出。同时,在进行预测之前应先进行模型拟合,因此应该将 `model.fit(X, y)` 的代码移到 `model.predict(X)` 之前。修改后的代码如下:
```
import pandas as pd
from sklearn.linear_model import LinearRegression
# 读取 Excel 文件
data = pd.read_excel('D://数据1.xlsx', sheet_name='4')
# 把数据分成输入和输出
X = data.iloc[:, 0:5].values
y = data.iloc[:, 5].values
# 创建线性回归模型
model = LinearRegression()
# 拟合模型
model.fit(X, y)
# 使用模型进行预测
y_pred = model.predict(X)
# 打印预测结果
print(y_pred)
```
阅读全文