import pandas as pd from sklearn.linear_model import LinearRegression # 读取 Excel 文件 data = pd.read_excel('D://数据1.xlsx', sheet_name='4') # 把数据分成输入和输出 X = data.iloc[:, 0:5].values y = data.iloc[:, 0:5].values # 创建线性回归模型 model = LinearRegression() # 使用模型进行预测 y_pred = model.predict(X) # 拟合模型 model.fit(X, y) # 预测结果 y_pred = model.predict(X)修改错误
时间: 2024-02-16 17:05:24 浏览: 65
在这段代码中,`X` 与 `y` 的赋值存在错误,应该将 `y` 的赋值改为 `data.iloc[:, 5].values`,即选取 Excel 文件中第 6 列数据作为输出。同时,在进行预测之前应先进行模型拟合,因此应该将 `model.fit(X, y)` 的代码移到 `model.predict(X)` 之前。修改后的代码如下:
```
import pandas as pd
from sklearn.linear_model import LinearRegression
# 读取 Excel 文件
data = pd.read_excel('D://数据1.xlsx', sheet_name='4')
# 把数据分成输入和输出
X = data.iloc[:, 0:5].values
y = data.iloc[:, 5].values
# 创建线性回归模型
model = LinearRegression()
# 拟合模型
model.fit(X, y)
# 使用模型进行预测
y_pred = model.predict(X)
# 打印预测结果
print(y_pred)
```
相关问题
import pandas as pd import numpy as np from sklearn.linear_model import Ridge from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import PolynomialFeatures from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import f_regression from sklearn.model_selection import train_test_split # 读取 Excel 文件 data = pd.read_excel('D://数据1.xlsx', sheet_name='000') # 把数据分成输入和输出 X = data.iloc[:, 0:4].values y = data.iloc[:, 0:4].values # 标准化处理 scaler = StandardScaler() X = scaler.fit_transform(X) # 添加多项式特征 poly = PolynomialFeatures(degree=2, include_bias=False) X = poly.fit_transform(X) # 特征选择 selector = SelectKBest(f_regression, k=3) X = selector.fit_transform(X, y) # 将数据分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) # 创建岭回归模型 model = Ridge(alpha=0.2) # 拟合模型 model.fit(X_train, y_train) # 使用模型进行预测 y_pred = model.predict(X_test) # 将预测结果四舍五入取整 y_pred = np.round(y_pred) # 去除重复行 y_pred = np.unique(y_pred, axis=0) # 打印预测结果 print(y_pred)这个代码里面我怎么加入y.ravel() 函数将 y 转换为一维数组
在这个代码中,我们需要将 `y` 转换为一维数组,可以使用 `y.ravel()` 函数来实现。修改后的代码如下:
```python
import pandas as pd
import numpy as np
from sklearn.linear_model import Ridge
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import PolynomialFeatures
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import f_regression
from sklearn.model_selection import train_test_split
# 读取 Excel 文件
data = pd.read_excel('D://数据1.xlsx', sheet_name='000')
# 把数据分成输入和输出
X = data.iloc[:, 0:4].values
y = data.iloc[:, 4].values # 将 y 修改为第 5 列的数据
y = y.ravel() # 将 y 转换为一维数组
# 标准化处理
scaler = StandardScaler()
X = scaler.fit_transform(X)
# 添加多项式特征
poly = PolynomialFeatures(degree=2, include_bias=False)
X = poly.fit_transform(X)
# 特征选择
selector = SelectKBest(f_regression, k=3)
X = selector.fit_transform(X, y)
# 将数据分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
# 创建岭回归模型
model = Ridge(alpha=0.2)
# 拟合模型
model.fit(X_train, y_train)
# 使用模型进行预测
y_pred = model.predict(X_test)
# 将预测结果四舍五入取整
y_pred = np.round(y_pred)
# 去除重复行
y_pred = np.unique(y_pred, axis=0)
# 打印预测结果
print(y_pred)
```
在这个代码中,我们将 `y` 修改为 Excel 文件中的第 5 列的数据,然后使用 `y.ravel()` 将其转换为一维数组。这样,就可以避免在特征选择过程中出现错误提示。
import numpy as np import pandas import pandas as pd import matplotlib from sklearn import naive_bayes from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import normalize from sklearn.preprocessing import Binarizer from sklearn.impute import SimpleImputer from sklearn.preprocessing import OneHotEncoder import matplotlib.pyplot as plt from sklearn.metrics import roc_curve, auc from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import confusion_matrix matplotlib.rc("font", family='Microsoft YaHei') data=pd.read_csv(r'D:\杂货铺\机器学习\银行数据集.csv',header=None)
这段代码导入了一系列的Python库,包括NumPy、Pandas、Matplotlib、scikit-learn等。其中,NumPy是Python科学计算的核心库,Pandas是数据处理的重要库,Matplotlib是绘图库,scikit-learn是机器学习库。接下来,使用Pandas读取一个CSV文件,该文件路径为D:\杂货铺\机器学习\银行数据集.csv,文件没有列名,所以header参数设置为None。