import csv import pandas as pd with open('学生信息表.csv', 'r') as f: reader = csv.reader(f) for row in reader: print([cell.replace(',', '') for cell in row]) new_data = ['17010002', '赵四', '女', '自动化1701'] df = pd.read_csv('学生信息表.csv') df.loc[df.shape[0]] = new_data df.to_csv('学生信息表.csv', index=False)代码改进

时间: 2023-08-21 14:05:08 浏览: 129
对于这段代码,可以进行以下的改进: 1. 使用with语句打开文件,可以在文件使用完毕后自动关闭文件,不需要手动调用f.close()方法。 2. 在读取CSV文件时,可以将csv.reader()返回的对象直接传给pd.DataFrame()方法,以构建DataFrame对象。 3. 在添加新数据时,可以使用pd.Series()方法构建一个新的Series对象,并将其添加到DataFrame对象中。 4. 在写入CSV文件时,可以使用mode='a'参数将数据追加到文件末尾,而不是覆盖原有数据。 综上所述,改进后的代码如下所示: ```python import pandas as pd # 读取CSV文件并输出数据 with open('学生信息表.csv', 'r') as f: df = pd.DataFrame(csv.reader(f)) print(df) # 添加新数据并写入CSV文件 new_data = pd.Series(['17010002', '赵四', '女', '自动化1701']) df = df.append(new_data, ignore_index=True) df.to_csv('学生信息表.csv', mode='a', header=False, index=False) ``` 其中,ignore_index=True参数用于忽略添加新数据时的索引,header=False参数用于不写入列名。
相关问题

import matplotlib.pyplot as plt import pandas as pd import csv '''plt.rcParams['font.sans-serif']=['Microsoft YaHei'] plt.axes(aspect='equal')''' data = pd.read_csv("./no1-1000.csv",encoding = 'gbk') for i in range(1,10): n=i*100+i data.drop([n],inplace=True) data.reset_index(drop=True) with open('./no1-1000.csv','rt') as f: reader=csv.reader(f) header_row=next(reader) for index,column_header in enumerate(header_row): print(index,column_header)我通过以上代码获得了CSV文件的索引,请问如何根据索引统计某列数据出现的频次,来绘制饼图

可以使用 pandas 库中的 value_counts() 方法来统计某列数据出现的频次,然后使用 matplotlib 库中的 pie() 方法来绘制饼图。 以下是代码示例: ``` import matplotlib.pyplot as plt import pandas as pd import csv # 读取 CSV 文件 data = pd.read_csv("./no1-1000.csv", encoding='gbk') # 删除特定行 for i in range(1, 10): n = i * 100 + i data.drop([n], inplace=True) # 重置索引 data.reset_index(drop=True) # 统计某列数据出现的频次 freq = data['某列数据'].value_counts() # 绘制饼图 plt.figure(figsize=(8, 8)) # 设置图形大小 plt.pie(freq.values, labels=freq.index, autopct='%1.1f%%') # 绘制饼图 plt.title("某列数据出现频次饼图") # 设置图形标题 plt.show() # 显示图形 ``` 其中,`'某列数据'` 需要替换成你要统计频次的列的列名。

import csv import os import pandas as pd # 源文件夹路径 source_folder = "E:/lexin/output" # 新csv文件夹路径 output_folder = "E:/lexin/output2" # 获取源文件夹中的所有csv文件 csv_files = [f for f in os.listdir(source_folder) if f.endswith('.csv')] # 创建新的csv文件 output_files = [] with open(os.path.join(output_folder, "output.csv"), 'w') as output_file: output_files.append(csv.writer(output_file)) for i in range(1, len(csv_files)): output_file_path = os.path.join(output_folder, f"output{i}.csv") with open(output_file_path, 'w') as new_output_file: output_files.append(csv.writer(new_output_file)) # 遍历每个csv文件 for csv_file in csv_files: with open(os.path.join(source_folder, csv_file), 'r') as f: reader = csv.reader(f) # 遍历每行数据 for i, row in enumerate(reader): # 将第i行写入对应的新csv文件 with open(os.path.join(output_folder, f"output{i}.csv"), 'a', newline='') as out_file:#newline=''作用:避免出现空行。 writer = csv.writer(out_file) writer.writerow(row)运行这段代码,要想将输出的csv文件以文件中第5第6列第一行数据为文件名,怎么修改

可以按照如下方式修改代码,以第5列和第6列的数据为文件名: ``` import csv import os import pandas as pd # 源文件夹路径 source_folder = "E:/lexin/output" # 新csv文件夹路径 output_folder = "E:/lexin/output2" # 获取源文件夹中的所有csv文件 csv_files = [f for f in os.listdir(source_folder) if f.endswith('.csv')] # 遍历每个csv文件 for csv_file in csv_files: with open(os.path.join(source_folder, csv_file), 'r') as f: reader = csv.reader(f) # 获取第5列和第6列的数据作为文件名 file_name = f"{reader[0][4]}_{reader[0][5]}.csv" output_file_path = os.path.join(output_folder, file_name) # 将第一个csv文件的数据写入新的csv文件 if csv_file == csv_files[0]: with open(output_file_path, 'w', newline='') as output_file: writer = csv.writer(output_file) for row in reader: writer.writerow(row) # 将其他csv文件的数据追加到对应的新csv文件中 else: with open(output_file_path, 'a', newline='') as output_file: writer = csv.writer(output_file) for row in reader: writer.writerow(row) ``` 在上述代码中,我们首先遍历每个csv文件,然后获取第5列和第6列的数据作为新csv文件的文件名。接着,我们判断当前csv文件是否为第一个csv文件,是的话就创建一个新的csv文件,并将第一个csv文件的数据写入其中;否则,我们打开对应的新csv文件,并将当前csv文件的数据追加到其中。 注意,在使用 `csv.reader()` 函数时,我们需要先读取第一行数据,即 `reader[0]`,才能获取第5列和第6列的数据。同时,在打开新csv文件时,需要设置 `newline=''`,避免出现空行。
阅读全文

相关推荐

import time import csv import pandas as pd from selenium import webdriver from selenium.webdriver import Chrome,ChromeOptions from selenium.webdriver.common.by import By # driver_path = r'C:\Program Files\Google\Chrome\Application\chrome.exe' driver = webdriver.Chrome() driver.get('https://www.jd.com/') def drop_down(): for x in range(1,9,2): time.sleep(1) j = x /9 js = 'document.documentElement.scrollTop = document.documentElement.scrollHeight * %f' % j driver.execute_script(js) driver.find_element(By.CSS_SELECTOR,'#key').send_keys('燕麦') driver.find_element(By.CSS_SELECTOR,'.button').click() f = open(f'B:\京东商品数据.csv', mode='a', encoding='gbk', newline='') csv_writer = csv.DictWriter(f, fieldnames=[ '商品标题', '商品价格', '店铺名字', '标签', '商品详情页', ]) csv_writer.writeheader() 商品信息 = [] def get_shop(): time.sleep(10) # driver.implicitly_wait(10) drop_down() lis = driver.find_elements(By.CSS_SELECTOR,'#J_goodsList ul li') for li in lis: title = li.find_element(By.CSS_SELECTOR,'.p-name em').text.replace('\n', '') price = li.find_element(By.CSS_SELECTOR,'.p-price strong i').text shop_name = li.find_element(By.CSS_SELECTOR,'.J_im_icon a').text href = li.find_element(By.CSS_SELECTOR,'.p-img a').get_attribute('href') icons = li.find_elements(By.CSS_SELECTOR,'.p-icons i') icon = ','.join([i.text for i in icons]) dit = { '商品标题':title, '商品价格':price, '店铺名字':shop_name, '标签':icon, '商品详情页':href, } csv_writer.writerow(dit) # print(title,price,href,icon,sep=' | ') for page in range(1,3): time.sleep(1) drop_down() get_shop() driver.find_element(By.CSS_SELECTOR,'.pn-next').click() driver.quit() # data = csv.reader(open('B:\京东商品数据.csv'),delimiter=',') # sortedl = sorted(data,key=lambda x:(x[0],x[1]),reverse=True) # print('最贵的商品信息') # print(sortedl) # with open('B:\京东商品数据.csv','r',encoding='gbk') as f: # f_csv = csv.reader(f) # max_price = 0 # next(f_csv) # for row in f_csv: # if row[1].isdigit() and int(row[1]) > max_price: # max_price = int(row[1]) # print(max_price) with open('B:\京东商品数据.csv', 'r') as file: reader = csv.reader(file) header =next(reader) next(reader) max_price = float('-inf') for row in reader: num = float(row[1]) if num > max_price: max_price = num item = row[0] name_0= row[2] print(item,max_price,name_0)程序中出现ValueError: could not convert string to float: '商品价格'解决方法

# coding=utf-8 #加载化学库 from rdkit import Chem from rdkit.Chem import Draw from rdkit.Chem import AllChem import pandas as pd import os import csv # 读取 CSV 文件 data = pd.read_csv('dataSetB.csv') # 提取 rxn_smiles 列 # 获取每一列的数据 smiles_mapping_namerxn = data['rxnSmiles_Mapping_NameRxn'] smiles_mapping_indigotk = data['rxnSmiles_Mapping_IndigoTK'] smiles_indigoautomapperknime = data['rxnSmiles_IndigoAutoMapperKNIME'] # 创建目录 os.makedirs('D:/1/', exist_ok=True) os.makedirs('D:/2/', exist_ok=True) os.makedirs('D:/3/', exist_ok=True) # 遍历每个 rxn_smiles 字符串并打印 #for i, smi in enumerate(smiles_mapping_namerxn): # print(smi) # rxn = chem.allchem.reactionfromsmarts(smi) # if rxn is not none: # # 绘制反应结构 # img = draw.reactiontoimage(rxn) # img.show() # img.save(f'd:/1/reaction_{i}.png') # else: # #当无法解析rxn_smiles时,使用print语句打印出相应的消息,并将无法解析的smi值作为附加信息一起打印。 # print("failed to parse rxn_smiles.", smi) #for i, smi in enumerate(smiles_mapping_indigotk): # print(smi) # rxn = Chem.AllChem.ReactionFromSmarts(smi) # if rxn is not None: # 绘制反应结构 # img = Draw.ReactionToImage(rxn) # img.save(f'D:/2/reaction_{i}.png') # else: # 当无法解析rxn_smiles时,使用print语句打印出相应的消息,并将无法解析的smi值作为附加信息一起打印。 # print("Failed to parse rxn_smiles.", smi) def new_func(smi): rxn = Chem.AllChem.ReactionFromSmarts(smi) return rxn #for i, smi in enumerate(smiles_indigoautomapperknime): # print(smi) # rxn = new_func(smi) # if rxn is not None: with open('your_file.csv', 'r') as file: reader = csv.reader(file) rows = list(reader) for row in rows[42154:]: # 绘制反应结构 img = Draw.ReactionToImage(rxn) img.save(f'D:/3/reaction_{i}.png') lines=lines+1 else: #当无法解析rxn_smiles时,使用print语句打印出相应的消息,并将无法解析的smi值作为附加信息一起打印。 print("Failed to parse rxn_smiles.", smi)什么地方错了。、

#加载模块 import csv import os import re import jieba import pandas as pd #设置读取情感词典的函数 def read_dict(file): my_dict=open(file).read() wordlist=re.findall(r'[\u4e00-\u9fa5]+',my_dict) return wordlist positive=read_dict('C:/Users/xiaomei/Desktop/reports/positive.txt') negative=read_dict('C:/Users/xiaomei/Desktop/reports/negative.txt') #读取csv文件,并进行处理 results={} with open('C:/Users/xiaomei/Desktop/report.csv', 'r', encoding='utf-8') as f: reader=csv.reader(f) for row in reader: text=row[2] text=re.sub(r'[^\u4e00-\u9fa5]+',' ',text) words=jieba.cut(text) #自定义情感分析函数 def senti_count(text): wordlist1=jieba.lcut(text) wordlist1=[w for w in wordlist1 if len(w)>1] positive_count=0 for positive_word in positive: positive_count=positive_count+wordlist1.count(positive_word) negative_count=0 for negative_word in negative: negative_count=negative_count+wordlist1.count(negative_word) return {'word_num':len(wordlist1),'positive_num':positive_count,'negative_num':negative_count} #生成保存路径 csvf=open('C:/Users/xiaomei/Desktop/情感分析.csv','w',encoding = 'gbk',newline = '') writer=csv.writer(csvf) writer.writerow(('公司名称','年份','总词汇数','正面情感词汇数','负面情感词汇数')) senti_score=senti_count(text) word_num = senti_score['word_num'] positive_num = senti_score['positive_num'] negative_num = senti_score['negative_num'] writer.writerow((company,year,word_num,positive_num,negative_num)) csvf.close()

最新推荐

recommend-type

Python将一个CSV文件里的数据追加到另一个CSV文件的方法

with open('2.csv', 'r', newline='') as f_input: # 创建一个CSV reader对象 reader = csv.reader(f_input) # 遍历2.csv中的每一行 for row in reader: # 将每一行数据写入1.csv writer.writerow(row) ```...
recommend-type

使用python获取csv文本的某行或某列数据的实例

with open('A.csv', 'r') as csvfile: reader = csv.reader(csvfile) all_rows = [row for row in reader] # 提取第2列数据 column_2 = [row[1] for row in all_rows] ``` 在这个例子中,`column_2`会包含...
recommend-type

python读取csv和txt数据转换成向量的实例

with open(filtpath, 'r') as csvfile: reader = csv.reader(csvfile) header = next(reader) # 获取列名 data = [] for line in reader: data.append(line) print(header) # 打印列名 print(data) # 打印数据...
recommend-type

python读写csv文件方法详细总结

with open('file.csv', 'r') as file: csv_reader = csv.reader(file) for row in csv_reader: print(row) ``` - 上述代码在Python 3中使用`with`语句打开文件,确保文件在使用后会被正确关闭。 - 如果文件...
recommend-type

YOLO算法-城市电杆数据集-496张图像带标签-电杆.zip

YOLO系列算法目标检测数据集,包含标签,可以直接训练模型和验证测试,数据集已经划分好,包含数据集配置文件data.yaml,适用yolov5,yolov8,yolov9,yolov7,yolov10,yolo11算法; 包含两种标签格:yolo格式(txt文件)和voc格式(xml文件),分别保存在两个文件夹中,文件名末尾是部分类别名称; yolo格式:<class> <x_center> <y_center> <width> <height>, 其中: <class> 是目标的类别索引(从0开始)。 <x_center> 和 <y_center> 是目标框中心点的x和y坐标,这些坐标是相对于图像宽度和高度的比例值,范围在0到1之间。 <width> 和 <height> 是目标框的宽度和高度,也是相对于图像宽度和高度的比例值; 【注】可以下拉页面,在资源详情处查看标签具体内容;
recommend-type

Java毕业设计项目:校园二手交易网站开发指南

资源摘要信息:"Java是一种高性能、跨平台的面向对象编程语言,由Sun Microsystems(现为Oracle Corporation)的James Gosling等人在1995年推出。其设计理念是为了实现简单性、健壮性、可移植性、多线程以及动态性。Java的核心优势包括其跨平台特性,即“一次编写,到处运行”(Write Once, Run Anywhere),这得益于Java虚拟机(JVM)的存在,它提供了一个中介,使得Java程序能够在任何安装了相应JVM的设备上运行,无论操作系统如何。 Java是一种面向对象的编程语言,这意味着它支持面向对象编程(OOP)的三大特性:封装、继承和多态。封装使得代码模块化,提高了安全性;继承允许代码复用,简化了代码的复杂性;多态则增强了代码的灵活性和扩展性。 Java还具有内置的多线程支持能力,允许程序同时处理多个任务,这对于构建服务器端应用程序、网络应用程序等需要高并发处理能力的应用程序尤为重要。 自动内存管理,特别是垃圾回收机制,是Java的另一大特性。它自动回收不再使用的对象所占用的内存资源,这样程序员就无需手动管理内存,从而减轻了编程的负担,并减少了因内存泄漏而导致的错误和性能问题。 Java广泛应用于企业级应用开发、移动应用开发(尤其是Android平台)、大型系统开发等领域,并且有大量的开源库和框架支持,例如Spring、Hibernate、Struts等,这些都极大地提高了Java开发的效率和质量。 标签中提到的Java、毕业设计、课程设计和开发,意味着文件“毕业设计---社区(校园)二手交易网站.zip”中的内容可能涉及到Java语言的编程实践,可能是针对学生的课程设计或毕业设计项目,而开发则指出了这些内容的具体活动。 在文件名称列表中,“SJT-code”可能是指该压缩包中包含的是一个特定的项目代码,即社区(校园)二手交易网站的源代码。这类网站通常需要实现用户注册、登录、商品发布、浏览、交易、评价等功能,并且需要后端服务器支持,如数据库连接和事务处理等。考虑到Java的特性,网站的开发可能使用了Java Web技术栈,如Servlet、JSP、Spring Boot等,以及数据库技术,如MySQL或MongoDB等。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【MVC标准化:肌电信号处理的终极指南】:提升数据质量的10大关键步骤与工具

![MVC标准化](https://img-blog.csdn.net/20160221141956498) # 摘要 MVC标准化是肌电信号处理中确保数据质量的重要步骤,它对于提高测量结果的准确性和可重复性至关重要。本文首先介绍肌电信号的生理学原理和MVC标准化理论,阐述了数据质量的重要性及影响因素。随后,文章深入探讨了肌电信号预处理的各个环节,包括噪声识别与消除、信号放大与滤波技术、以及基线漂移的校正方法。在提升数据质量的关键步骤部分,本文详细描述了信号特征提取、MVC标准化的实施与评估,并讨论了数据质量评估与优化工具。最后,本文通过实验设计和案例分析,展示了MVC标准化在实践应用中的具
recommend-type

能否提供一个在R语言中执行Framingham数据集判别分析的详细和完整的代码示例?

当然可以。在R语言中,Framingham数据集是一个用于心血管疾病研究的经典数据集。以下是使用`ggfortify`包结合` factoextra`包进行判别分析的一个基本步骤: 首先,你需要安装所需的库,如果尚未安装,可以使用以下命令: ```r install.packages(c("ggfortify", "factoextra")) ``` 然后加载所需的数据集并做预处理。Framingham数据集通常存储在`MASS`包中,你可以通过下面的代码加载: ```r library(MASS) data(Framingham) ``` 接下来,我们假设你已经对数据进行了适当的清洗和转换
recommend-type

Blaseball Plus插件开发与构建教程

资源摘要信息:"Blaseball Plus" Blaseball Plus是一个与游戏Blaseball相关的扩展项目,该项目提供了一系列扩展和改进功能,以增强Blaseball游戏体验。在这个项目中,JavaScript被用作主要开发语言,通过在package.json文件中定义的脚本来完成构建任务。项目说明中提到了开发环境的要求,即在20.09版本上进行开发,并且提供了一个flake.nix文件来复制确切的构建环境。虽然Nix薄片是一项处于工作状态(WIP)的功能且尚未完全记录,但可能需要用户自行安装系统依赖项,其中列出了Node.js和纱(Yarn)的特定版本。 ### 知识点详细说明: #### 1. Blaseball游戏: Blaseball是一个虚构的棒球游戏,它在互联网社区中流行,其特点是独特的规则、随机事件和社区参与的元素。 #### 2. 扩展开发: Blaseball Plus是一个扩展,它可能是为在浏览器中运行的Blaseball游戏提供额外功能和改进的软件。扩展开发通常涉及编写额外的代码来增强现有软件的功能。 #### 3. JavaScript编程语言: JavaScript是一种高级的、解释执行的编程语言,被广泛用于网页和Web应用的客户端脚本编写,是开发Web扩展的关键技术之一。 #### 4. package.json文件: 这是Node.js项目的核心配置文件,用于声明项目的各种配置选项,包括项目名称、版本、依赖关系以及脚本命令等。 #### 5.构建脚本: 描述中提到的脚本,如`build:dev`、`build:prod:unsigned`和`build:prod:signed`,这些脚本用于自动化构建过程,可能包括编译、打包、签名等步骤。`yarn run`命令用于执行这些脚本。 #### 6. yarn包管理器: Yarn是一个快速、可靠和安全的依赖项管理工具,类似于npm(Node.js的包管理器)。它允许开发者和项目管理依赖项,通过简单的命令行界面可以轻松地安装和更新包。 #### 7. Node.js版本管理: 项目要求Node.js的具体版本,这里是14.9.0版本。管理特定的Node.js版本是重要的,因为在不同版本间可能会存在API变化或其他不兼容问题,这可能会影响扩展的构建和运行。 #### 8. 系统依赖项的安装: 文档提到可能需要用户手动安装系统依赖项,这在使用Nix薄片时尤其常见。Nix薄片(Nix flakes)是一个实验性的Nix特性,用于提供可复现的开发环境和构建设置。 #### 9. Web扩展的工件放置: 构建后的工件放置在`addon/web-ext-artifacts/`目录中,表明这可能是一个基于WebExtension的扩展项目。WebExtension是一种跨浏览器的扩展API,用于创建浏览器扩展。 #### 10. 扩展部署: 描述中提到了两种不同类型的构建版本:开发版(dev)和生产版(prod),其中生产版又分为未签名(unsigned)和已签名(signed)版本。这些不同的构建版本用于不同阶段的开发和发布。 通过这份文档,我们能够了解到Blaseball Plus项目的开发环境配置、构建脚本的使用、依赖管理工具的运用以及Web扩展的基本概念和部署流程。这些知识点对于理解JavaScript项目开发和扩展构建具有重要意义。