def normalize(volume, maxdisparity): return 255.0 * volume / maxdisparity def select_disparity(aggregation_volume): volume = np.sum(aggregation_volume, axis=3) disparity_map = np.argmin(volume, axis=2) return disparity_map啥意思

时间: 2023-06-25 19:05:00 浏览: 51
这段代码是用于视差估计(Stereo Matching)中的聚合过程中的后处理步骤。其中: - `normalize(volume, maxdisparity)` 函数将聚合体积中的数值归一化到 [0, 255] 范围内,以便最后输出视差图像。 - `select_disparity(aggregation_volume)` 函数则是用于从聚合体积中找到最佳的视差值。聚合体积中的每个元素代表了在不同的视差值下,对应像素点的匹配程度得分。因此,将每个视差下的得分加和,即可得到一个二维的热图。最后,从这个热图中找到每个像素点得分最小的那个视差值,即为该像素点的视差值。这个过程可以用 `np.sum()` 和 `np.argmin()` 函数实现。
相关问题

normalize_data = normalize_data[:, np.newaxis] # 增加维度

### 回答1: normalize_data = normalize_data[:, np.newaxis] 是一行代码,用于对数据进行维度变换的操作。 其中,normalize_data 是一个二维的数据矩阵,每一行代表一个样本,每一列代表该样本的一个特征。而 normalize_data[:, np.newaxis] 则是将这个二维矩阵的每个元素都添加一个新的维度。 该操作的作用是将原本的二维矩阵变成三维矩阵,其中两个维度与原矩阵保持一致,而新增加的维度则包含原矩阵的每个元素。 这样做的目的可以有多种,一种常见的情况是为了在进行某些操作时,如计算特征之间的相关性、进行算法模型的训练等,需要将原来的二维数据在一个新的维度上进行拓展。 具体来说,np.newaxis 可以理解为在原矩阵的每个元素上创建一个新的坐标轴。通过这个操作,可以方便地对数据进行进一步的处理和分析。 需要注意的是,np.newaxis 是一个常用的向量操作函数,它并不是一个新的单独的维度,而是作为一个索引指令被传递给 NumPy 的数组对象。 ### 回答2: normalize_data = normalize_data[:, np.newaxis] 的作用是将数据中的每个元素变成一个一维的数组,并且在行的维度上增加一个新的维度。这样做的结果是原来的一维数组变成了一个二维数组。 例如,假设 normalize_data 是一个一维数组 [1, 2, 3, 4]。使用 normalize_data[:, np.newaxis] 就会将这个数组变成一个二维数组: [[1] [2] [3] [4]] 新的数组有四行一列,每个元素都被放在了一个单独的一维数组中。 这种操作常用于机器学习和数据分析中。在一些算法中,为了处理一维数据集,需要将其转换为二维数组。而使用 np.newaxis 可以方便地实现这个转换。另外,这种转换也可以在进行数据处理和特征工程时使用,以便更好地适应不同算法和模型的要求。 ### 回答3: normalize_data = normalize_data[:, np.newaxis] 的作用是将一维的数据 normalize_data 变为二维的数据。 其中 normalize_data 是一个一维数组,[:, np.newaxis] 表示将其在列方向上进行切片,即将每个元素变为一个包含一个元素的一维数组,最终形成一个二维数组。 举例说明,假设 normalize_data = [1, 2, 3],那么 normalize_data[:, np.newaxis] 的结果就是一个形状为 (3, 1) 的二维数组。 [[1] [2] [3]] 这样做的目的是为了方便进行一些涉及矩阵计算的操作。通过将一维数组转换为二维数组,我们可以方便地进行矩阵的乘法、加法等运算。 在机器学习中,常常需要对数据进行预处理,其中一项常见的预处理操作就是数据的归一化。通过将数据标准化到一定的范围内,可以避免数据的尺度差异对模型训练和预测的结果造成影响。normalize_data = normalize_data[:, np.newaxis] 通常在数据归一化的过程中使用,将一维的数据 reshape 为二维的数据,以便可以方便地进行标准化操作。

import argparse import logging import re from multiprocessing import Process, Queue from pathlib import Path import numpy as np from skimage import exposure, filters from modules.config import logger from modules.volume import volume_loading_func, volume_saving_func def normalize_intensity( np_volume: np.ndarray, relative_path: Path, logger: logging.Logger ): logger.info(f"[processing start] {relative_path}") nstack = len(np_volume) stack: np.ndarray = np_volume[nstack // 2 - 16 : nstack // 2 + 16] hist_y, hist_x = exposure.histogram(stack[stack > 0]) thr = filters.threshold_otsu(stack[stack > 0]) peak_air = np.argmax(hist_y[hist_x < thr]) + hist_x[0] peak_soil = np.argmax(hist_y[hist_x > thr]) + (thr - hist_x[0]) + hist_x[0] np_volume = np_volume.astype(np.int64) for i in range(len(np_volume)): np_volume[i] = ( (np_volume[i] - peak_air).clip(0) / (peak_soil - peak_air) * 256 / 2 ) logger.info(f"[processing end] {relative_path}") return exposure.rescale_intensity( np_volume, in_range=(0, 255), out_range=(0, 255) ).astype(np.uint8) 请详细解释每一行的代码意思

这是一段 Python 代码,它进行了体积数据的预处理,具体解释如下: ``` import argparse # 用来解析命令行参数 import logging # 用来记录日志 import re # 用来进行正则表达式的匹配 from multiprocessing import Process, Queue # 用来进行并行计算 from pathlib import Path # 用来处理文件路径 import numpy as np # 用来处理数组数据 from skimage import exposure, filters # 用来进行图像处理 from modules.config import logger # 从 modules.config 模块中导入日志记录器 from modules.volume import volume_loading_func, volume_saving_func # 从 modules.volume 模块中导入一些函数 def normalize_intensity(np_volume: np.ndarray, relative_path: Path, logger: logging.Logger): """ 对给定的 3D 图像进行归一化处理,返回归一化后的 3D 图像。 Args: np_volume: 给定的 3D 图像,数据类型为 np.ndarray。 relative_path: 3D 图像在磁盘上的相对路径,数据类型为 Path。 logger: 用来记录日志的 Logger 对象,数据类型为 logging.Logger。 Returns: 进行归一化处理后的 3D 图像,数据类型为 np.ndarray。 """ logger.info(f"[processing start] {relative_path}") # 取中间的 32 张图像,作为计算阈值和峰值的输入 nstack = len(np_volume) stack: np.ndarray = np_volume[nstack // 2 - 16 : nstack // 2 + 16] # 使用 skimage 库中的直方图均衡化和 OTSU 二值化算法,得到背景和前景 hist_y, hist_x = exposure.histogram(stack[stack > 0]) thr = filters.threshold_otsu(stack[stack > 0]) peak_air = np.argmax(hist_y[hist_x < thr]) peak_soil = np.argmax(hist_y[hist_x > thr]) + (thr - hist_x[0]) # 对原始的 3D 数据进行归一化处理,将灰度值线性映射到 0-127 范围内 np_volume = np_volume.astype(np.int64) for i in range(len(np_volume)): np_volume[i] = ((np_volume[i] - peak_air).clip(0) / (peak_soil - peak_air) * 256 / 2) logger.info(f"[processing end] {relative_path}") # 对归一化后的 3D 图像进行再次线性映射,将灰度值映射到 0-255 范围内 return exposure.rescale_intensity( np_volume, in_range=(0, 255), out_range=(0, 255) ).astype(np.uint8) ``` 具体的注释在代码中已经给出。

相关推荐

LDAM损失函数pytorch代码如下:class LDAMLoss(nn.Module): def init(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).init() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s if weight is not None: weight = torch.FloatTensor(weight).cuda() self.weight = weight self.cls_num_list = cls_num_list def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(1,0)) # 0,1 batch_m = batch_m.view((16, 1)) # size=(batch_size, 1) (-1,1) x_m = x - batch_m output = torch.where(index, x_m, x) if self.weight is not None: output = output * self.weight[None, :] target = torch.flatten(target) # 将 target 转换成 1D Tensor logit = output * self.s return F.cross_entropy(logit, target, weight=self.weight) 模型部分参数如下:# 设置全局参数 model_lr = 1e-5 BATCH_SIZE = 16 EPOCHS = 50 DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') use_amp = True use_dp = True classes = 7 resume = None CLIP_GRAD = 5.0 Best_ACC = 0 #记录最高得分 use_ema=True model_ema_decay=0.9998 start_epoch=1 seed=1 seed_everything(seed) # 数据增强 mixup mixup_fn = Mixup( mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None, prob=0.1, switch_prob=0.5, mode='batch', label_smoothing=0.1, num_classes=classes) # 读取数据集 dataset_train = datasets.ImageFolder('/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/train', transform=transform) dataset_test = datasets.ImageFolder("/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/valid", transform=transform_test)# 导入数据 train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True,drop_last=True) test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False) 帮我用pytorch实现模型在模型训练中使用LDAM损失函数

最新推荐

recommend-type

grpcio-1.44.0-cp39-cp39-manylinux2010_x86_64.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

grpcio-1.42.0-cp38-cp38-macosx_10_10_x86_64.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

江西省抚州市信通网络科技有限公司主页图标修正版

各页面加入图标 新网站,新气象。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、