解释这段代码% QPSK M = 8; % Pi = 180; % Determine the position of constellation points Seita = atan2(imag(s),real(s)); % Seita = angle(s); for k = 1:par.U if Seita(k)<0 && Seita(k)>-pi Seita(k) = Seita(k)+2*pi; else Seita(k) = Seita(k); end end seita = Seita;

时间: 2023-12-28 18:03:24 浏览: 22
这段代码实现了对QPSK调制的星座点进行偏移。偏移的过程是通过计算星座点的极角,并根据其值进行调整。 首先,代码中定义了QPSK调制的星座点数量为8个,即M=8。然后,定义了一个常量Pi为180度。 接下来,通过使用函数 atan2(imag(s),real(s)) 计算出所有星座点的极角,并将其存储在变量 Seita 中。其中,imag(s) 和 real(s) 分别表示星座点的虚部和实部。 接着,使用一个循环对所有的极角进行检查和调整。如果某个星座点的极角小于0且大于-pi,则将其加上2*pi进行调整。否则,不进行任何调整。 最后,将调整后的极角存储在变量 seita 中。 通过对星座点进行偏移,可以使QPSK调制更加稳定和鲁棒,减少误码率。
相关问题

“qpsk_mod=qpsk.*exp(1j*2*pi*fc.*t); 错误使用 .* 矩阵维度必须一致。” 代码报错

这个错误提示是因为“.*”表示矩阵逐元素相乘,要求两个矩阵的维度必须一致,但在这里却出现了维度不一致的情况。可能是因为变量 qpsk 或者 fc 的维度不匹配导致的。你需要检查一下 qpsk 和 fc 这两个变量的维度是否正确,并对它们进行调整,使得它们的维度能够匹配。另外,你可以使用“*”运算符来进行矩阵乘法,这样就不需要考虑维度是否匹配的问题了。

% OFDM信号生成 N = 64; % 子载波数量 M = 4; % QPSK调制 data = randi([0 M-1],N,1); % 随机产生数据 modData = qammod(data,M); % QPSK调制 ifftData = ifft(modData); % IFFT % 添加噪声 SNR = 10; % 信噪比 noise = randn(size(ifftData)); % 高斯白噪声 noisePower = norm(noise)^2/length(noise); signalPower = norm(ifftData)^2/length(ifftData); scale = sqrt((signalPower/noisePower)/(10^(SNR/10))); noisyData = ifftData + scale*noise; % 添加噪声 % 频域均衡器 pilot = [1 -1 1 -1]; % 导频序列 pilotLoc = [12 26 40 54]; % 导频位置 pilotData = noisyData(pilotLoc); % 提取导频 H = pilotData./pilot; % 计算通道频率响应 H(1) = H(2); % 去除DC分量 H(N/2+1) = H(N/2); % 去除Nyquist分量 H = interp1(pilotLoc,H,1:N,'linear','extrap'); % 线性插值 eqData = noisyData./H; % 均衡 % 解调 fftData = fft(eqData); % FFT demodData = qamdemod(fftData,M); % QPSK解调 % BER计算 ber = biterr(data,demodData)/N; % 计算误码率 fprintf('信噪比为%d dB时的误码率为%f\n',SNR,ber);

As an AI language model, I understand that "null" refers to the absence of any value or data in a variable or field. It is often used in programming to represent a missing or undefined value.

相关推荐

最新推荐

recommend-type

QPSK、8PSK、16PSK以及16QAM调制下的信道容量曲线

现在有一个二维M元信号集合,及信号的二维矢量表示。每一个信号波形都可以由完备的两个归一化正交函数的线性组合表示。现每一个都用使用复数表示。在高斯信道中二维的M进制调制的容量公式可以看成二进制情况的直接...
recommend-type

QPSK调制原理及python实现

文章目录QPSK调制原理及python实现QPSK调制原理python实现调制过程1、导入相关库函数2、调制过程3、作图过程 QPSK调制原理及python实现 QPSK调制原理 QPSK调制过程及原理在前面的博客中以及详细分析过。在本文中将...
recommend-type

无线通信中的IQ调制,BPSK调制,QPSK调制,16QAM调制的理解.pdf

本文介绍了BPSK QPSK QAM 的仿真,以及基于IQ两路调制解调算法的实现。有助于初学者学习与理解调制解调算法。
recommend-type

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a
recommend-type

matlab建立计算力学课程的笔记和文件.zip

matlab建立计算力学课程的笔记和文件.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。