DDPG结合GCN进行交通流预测的pytorch代码
时间: 2024-01-25 11:05:10 浏览: 84
图卷积网络 - PyTorch实现图卷积网络(GCN、GAT、Chebnet)的交通流量预测(完整源码和数据)
这里提供一个基于DDPG和GCN的交通流预测的PyTorch实现的代码示例。代码实现了基于GCN的图形表示学习和DDPG的强化学习算法,用于预测交通流量。以下是代码示例:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import numpy as np
import random
class GCN(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(GCN, self).__init__()
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.output_dim = output_dim
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, output_dim)
def forward(self, adj, x):
x = F.relu(self.fc1(torch.sparse.mm(adj, x)))
x = self.fc2(x)
return x
class Actor(nn.Module):
def __init__(self, state_dim, action_dim, max_action):
super(Actor, self).__init__()
self.fc1 = nn.Linear(state_dim, 256)
self.fc2 = nn.Linear(256, 256)
self.fc3 = nn.Linear(256, action_dim)
self.max_action = max_action
def forward(self, state):
a = F.relu(self.fc1(state))
a = F.relu(self.fc2(a))
a = self.max_action * torch.tanh(self.fc3(a))
return a
class Critic(nn.Module):
def __init__(self, state_dim, action_dim):
super(Critic, self).__init__()
self.fc1 = nn.Linear(state_dim + action_dim, 256)
self.fc2 = nn.Linear(256, 256)
self.fc3 = nn.Linear(256, 1)
def forward(self, state, action):
sa = torch.cat([state, action], 1)
q = F.relu(self.fc1(sa))
q = F.relu(self.fc2(q))
q = self.fc3(q)
return q
class ReplayBuffer(object):
def __init__(self, state_dim, action_dim, max_size=int(1e6)):
self.max_size = max_size
self.ptr = 0
self.size = 0
self.state = np.zeros((max_size, state_dim))
self.action = np.zeros((max_size, action_dim))
self.next_state = np.zeros((max_size, state_dim))
self.reward = np.zeros((max_size, 1))
self.done = np.zeros((max_size, 1))
def add(self, state, action, next_state, reward, done):
self.state[self.ptr] = state
self.action[self.ptr] = action
self.next_state[self.ptr] = next_state
self.reward[self.ptr] = reward
self.done[self.ptr] = done
self.ptr = (self.ptr + 1) % self.max_size
self.size = min(self.size + 1, self.max_size)
def sample(self, batch_size):
ind = np.random.randint(0, self.size, size=batch_size)
return (
torch.FloatTensor(self.state[ind]),
torch.FloatTensor(self.action[ind]),
torch.FloatTensor(self.next_state[ind]),
torch.FloatTensor(self.reward[ind]),
torch.FloatTensor(self.done[ind])
)
class DDPG(object):
def __init__(
self,
state_dim,
action_dim,
max_action,
gamma=0.99,
tau=0.005,
actor_lr=1e-3,
critic_lr=1e-3,
batch_size=100,
buffer_size=int(1e6)
):
self.gamma = gamma
self.tau = tau
self.batch_size = batch_size
self.actor = Actor(state_dim, action_dim, max_action)
self.actor_target = Actor(state_dim, action_dim, max_action)
self.actor_target.load_state_dict(self.actor.state_dict())
self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=actor_lr)
self.critic = Critic(state_dim, action_dim)
self.critic_target = Critic(state_dim, action_dim)
self.critic_target.load_state_dict(self.critic.state_dict())
self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=critic_lr)
self.max_action = max_action
self.replay_buffer = ReplayBuffer(state_dim, action_dim, max_size=buffer_size)
def select_action(self, state):
state = torch.FloatTensor(state.reshape(1, -1))
return self.actor(state).cpu().data.numpy().flatten()
def train(self):
state, action, next_state, reward, done = self.replay_buffer.sample(self.batch_size)
next_action = self.actor_target(next_state)
noise = np.random.normal(0, 0.1, size=(self.batch_size, self.max_action))
next_action = next_action + torch.FloatTensor(noise).to('cpu')
next_action = next_action.clamp(-self.max_action, self.max_action)
target_Q = self.critic_target(next_state, next_action)
target_Q = reward + (1 - done) * self.gamma * target_Q
current_Q = self.critic(state, action)
critic_loss = F.mse_loss(current_Q, target_Q.detach())
self.critic_optimizer.zero_grad()
critic_loss.backward()
self.critic_optimizer.step()
actor_loss = -self.critic(state, self.actor(state)).mean()
self.actor_optimizer.zero_grad()
actor_loss.backward()
self.actor_optimizer.step()
for param, target_param in zip(self.critic.parameters(), self.critic_target.parameters()):
target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)
for param, target_param in zip(self.actor.parameters(), self.actor_target.parameters()):
target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)
def save(self, filename):
torch.save(self.actor.state_dict(), filename + "_actor")
torch.save(self.critic.state_dict(), filename + "_critic")
def load(self, filename):
self.actor.load_state_dict(torch.load(filename + "_actor"))
self.critic.load_state_dict(torch.load(filename + "_critic"))
class Graph(object):
def __init__(self):
self.adj = None
self.features = None
def build_adj(self, num_nodes):
self.adj = np.zeros((num_nodes, num_nodes))
def add_edge(self, i, j, w=1):
self.adj[i][j] = w
def set_features(self, features):
self.features = features
def train_ddpg(g, data, state_dim, action_dim, max_action, num_episodes=100, gamma=0.99, tau=0.005,
actor_lr=1e-3, critic_lr=1e-3, batch_size=100, buffer_size=int(1e6)):
env = g
ddpg = DDPG(
state_dim,
action_dim,
max_action,
gamma=gamma,
tau=tau,
actor_lr=actor_lr,
critic_lr=critic_lr,
batch_size=batch_size,
buffer_size=buffer_size
)
num_episodes = num_episodes
for i in range(num_episodes):
state = env.features
done = False
episode_reward = 0
while not done:
action = ddpg.select_action(state)
next_state = state
reward = data[i]
done = True
ddpg.replay_buffer.add(state, action, next_state, reward, done)
ddpg.train()
state = next_state
episode_reward += reward
return ddpg
# Example usage:
g = Graph()
g.build_adj(10)
g.add_edge(0, 1, 1)
g.add_edge(1, 2, 1)
g.add_edge(2, 3, 1)
g.add_edge(3, 4, 1)
g.add_edge(4, 5, 1)
g.add_edge(5, 6, 1)
g.add_edge(6, 7, 1)
g.add_edge(7, 8, 1)
g.add_edge(8, 9, 1)
g.set_features(np.random.rand(10, 4))
data = np.random.rand(100)
ddpg = train_ddpg(g, data, state_dim=4, action_dim=1, max_action=1, num_episodes=100)
```
请注意,此代码示例仅演示了如何将DDPG和GCN结合在一起进行交通流预测,并可能需要进行进一步修改才能适应您的具体应用场景。
阅读全文